Skip to main content

Is Massive Solar Energy Conversion a Practical Prospect?

  • Chapter
Hydrogen Energy
  • 519 Accesses

Abstract

Seven methods for solar energy to electricity are described; costs per kW and of the derived electricity costs are given. Availability limits the choice of photovoltaics except AlSb or AlSi. Recent technology would reduce silicon based plants to $375 per kW. Electrolysis at site and hydrogen passage would make far-off sources economic: desert concentrators with heat engines or ocean thermal gradient collectors. Electricity would be 10 mils per kWh-1; hydrogen $2.23 per 106 Btu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daniels, F., “Direct Use of the Sunfs Energy,” American Scientist, 55, No. 1, March 1964.

    Google Scholar 

  2. Ehricke, K. A. “The Power Relay Satellite Concept of the Framework of the Overall Energy Picture,” North American Aerospace Rockwell International, E73-12-1, December 1973.

    Google Scholar 

  3. Bockris, J. O’M., N. Bonciocat and F. Gutmann, “An Introduction to Electrochemical Science,” Wykeham Press, London, 1974, p. 115.

    Google Scholar 

  4. Chapin, D. M., C. S. Fuller and G. L. Pearson, J. Appl. Phys., 25, 676 (1954).

    Article  Google Scholar 

  5. Bockris, J. O’M. and S. Srinivasan, “Fuel Cells: Their Elec-trochemistry,” McGraw-Hill, 1970, p. 13.

    Google Scholar 

  6. Zaromb, S., M. E. Lasser and F. Kaihammer, J. Electrochem. Soc., 108, 42 (1961).

    Article  Google Scholar 

  7. Copeland, Black and Garrett, Chem. Rev., 31, 177 (1942).

    Article  Google Scholar 

  8. Casey, E. J., Brighton Battery Conference, 1960.

    Google Scholar 

  9. Report of the Australian Academy of Science on Solar Energy Research in Australia, Report No. 17, September 1973, p. 52.

    Google Scholar 

  10. Tabor, H., Solar Energy, Special Issue, Sept. 27–30 (1961).

    Google Scholar 

  11. Begg, J. E., Nature, 205, 1025 (1965).

    Article  Google Scholar 

  12. Hildebrandt, A. F., G. M. Haas, W. R. Jenkins and J. P. Colaco, E. & S., 53, 684 (1972).

    Google Scholar 

  13. Farber, E. and F. L. Prescott, Solar Energy, 9, 170 (1965).

    Article  Google Scholar 

  14. Putnam, P. C., “Power from the Wind,” Van Nostrand, New York, 1948, p. 88.

    Google Scholar 

  15. Anderson, J. H. and J. H. Anderson, Mech. Eng., p. 42 (1966).

    Google Scholar 

  16. Zener, C., private communication, 1973.

    Google Scholar 

  17. Currin, C. G., K. S. Ling, E. L. Ralph, W. A. Smith and R. J. Stirn, Photovoltaic Specialists Conference, 1972.

    Google Scholar 

  18. Boer, K. W., “Direct Solar Energy Conversion for Terrestrial Use,” Institute of Energy Conversion, University of Delaware.

    Google Scholar 

  19. Meinel, A. B., private communication, 1972.

    Google Scholar 

  20. Fujischima, A. and G. Honda, Nature, 238, 38 (1972).

    Article  Google Scholar 

  21. Benemann, J. R., “Hydrogen Production from Water and Sunlight by Photo-Synthetic Process,” University of California, San Diego, La Jolla, California, December 1973.

    Google Scholar 

  22. Loferski, J. J., “Some Considerations Affecting the Choice of Semiconductors for Use in Solar Cells Intended for Large-Scale Energy Conversion,” Brown University, Rhode Island, March 1972.

    Google Scholar 

  23. Loferski, J. J., “The Principles of Photovoltaic Solar Energy Conversion,” Brown University, Rhode Island, March 1972.

    Google Scholar 

  24. Reference 9, page 58.

    Google Scholar 

  25. Solar Cells National Academy of Sciences, Washington, D.C., 1972, p. 19.

    Google Scholar 

  26. Solar Energy as a National Energy Resource NSF/NASA Solar Energy Panel, December 1972.

    Google Scholar 

  27. Bockris, J. O’M. and A. K. N. Reddy, “Modern Electrochemistry,” Rosetta Publications, Plenum, 1973, p. 930.

    Book  Google Scholar 

  28. Reference 25, p. 34.

    Google Scholar 

  29. Wolf, M., Energy Conversion, 11, 63 (1971).

    Article  Google Scholar 

  30. Lyons, L., private communication, 1974.

    Google Scholar 

  31. Meinel, A. B. and M. P. Meinel, Physics Today, p. 44, February 1972.

    Google Scholar 

  32. Horowitz, C. and C. N. Watson-Munro, International Solar Energy Society Symposium, Brisbane, June 1973.

    Google Scholar 

  33. Spakowski, A. E. and L. I. Shure, “Large-Scale Terrestrial Solar Cell Power Generation Cost: A Preliminary Assessment,” NASA Technical Memorandum TM X - 2520, March 1972.

    Google Scholar 

  34. Cohn, E., private communication, 1974.

    Google Scholar 

  35. Ralph, E. L., “A Plan to Utilize Solar Energy as an Electric- Power Source,” Proc. of the Eighth Photovoltaic Specialists Conference, Seattle, Washington, August 1970, IEEE, Catalogue No. 70C 32ED.

    Google Scholar 

  36. LaBelle, Jr., H. E., Materials Research Bulletin, 6, 581–590 (1971).

    Article  Google Scholar 

  37. LaBelle, Jr., H. E. and A. I. Mlavsky, Materials Research Bulletin, 6, 571–580 (1971).

    Article  Google Scholar 

  38. Shirland, F., 3rd Conference on Large-Scale Solar Energy Conversion for Terrestrial Use, Delaware, October 1971.

    Google Scholar 

  39. Haynes, J. G., Proc. 8th Phot. Spec. Con., p. 184 (Seattle, 1970 ).

    Google Scholar 

  40. Aaron, H. A. and S. E. Isakoff, 3rd Conf. on Large-Scale Solar Energy Conversion for Terrestrial Use, Delaware, October 1971.

    Google Scholar 

  41. George, D., University of Sydney, private communication, 1974.

    Google Scholar 

  42. Claude, G., “Power from Tropical Seas,” Mechanical Engineering, 52, 1039 (1930).

    Google Scholar 

  43. Gregory, D., D. Ng and G. Long, in “The Electrochemistry of Cleaner Environments,” edited by J. O’M. Bockris, Plenum, New York, 1972, p. 226.

    Google Scholar 

  44. Escher, W., Helios & Poseidon, Escher Associates, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Bockris, J.O. (1975). Is Massive Solar Energy Conversion a Practical Prospect?. In: Veziroğlu, T.N. (eds) Hydrogen Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2607-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2607-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2609-0

  • Online ISBN: 978-1-4684-2607-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics