Advertisement

Plasmalogenase is Elevated in Early Demyelinating Lesions

  • Lloyd A. Horrocks
  • Sheila Spanner
  • Rita Mozzi
  • Sheung Chun Fu
  • Robert A. D’Amato
  • Steven Krakowka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 100)

Summary

Plasmalogenase catalyzes the hydrolysis of ethanolamine plasmalogens to long-chain aldehydes and 2-acyl-sn-glycero-3-phosphoethanolamines. During development, plasmalogenase activity parallels myelination. The enzyme is most concentrated within oligodendroglial cells and is absent from myelin. The normal function of plasmalogenase in white matter may be related to its specificity for plasmalogens that contain most of the thromboxane and prostaglandin precursors.

Plasmalogenase activities are elevated in demyelinating CNS tissues including canine white matter with lesions due to distemper virus. Elevated plasmalogenase activity precedes cellular invasion and lysosomal activation as indicated by β-glucuronidase, acid proteinase and neutral proteinase activities. The elevation of plasmalogenase activity was 4.9-fold greater than normal in an early demyelinating lesion caused by the Snyder-Hill strain of dis­temper virus. Phospholipases acting on phosphatidyl ethanolamine were not activated in this tissue and have activities much lower than plasmalogenase in control tissues. Plasmalogenase activities are also elevated after intracerebral injections of complement-dependent anti-myelin antibody and after ischemia. Plasmalogenase acting on the oligodendrocyte plasma membrane may be responsible for necrosis of the oligodendrocyte that results in demyelination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansell, G.B. and Spanner, S., The magnesium ion-dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmalogen, Biochem. J. 94 (1965) 252–258.PubMedGoogle Scholar
  2. 2.
    Ansell, G.B. and Spanner, S., The activity of plasmalogenase in brain of developing rat, in Variation in Chemical Composition of Nervous System (G.B. Ansell, ed.) Pergamon Press, Oxford, 7; 1966 ).Google Scholar
  3. 3.
    Ansell, G.B. and Spanner, S., Plasmalogenase activity in normal and demyelinating tissue of the central nervous system, Biochem. J. 108 (1968) 207–209.PubMedGoogle Scholar
  4. 4.
    Autilio, L.A., Norton, W.T. and Terry, R.D., The preparation and some properties of purified myelin from the central nervous system. J. Neurochem. 11 (1964) 17–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Clendenon, N.R., Allen, N., Komatsu, T., Liss, L., Gordon, W.A. and Heimberger, K., Biochemical alteration in anoxic-ischemic lesion of rat brain, Arch. Neurol. 25 (1971) 432–448.PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper, M.F. and Webster, G.R., The differentiation of phospholipase A and A in rat and human nervous tissues, J. Neurochem. 17 (1970)1543–1554.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Amato, R.A., Horrocks, L.A. and Richardson, K.E., Kinetic properties of plasmalogenase from bovine brain, J. Neurochem. 24 (1975) 1251–1255.PubMedCrossRefGoogle Scholar
  8. 8.
    Dorman, R.V., Toews, A.D. and Horrocks, L.A., Plasmalogenase activities in neuronal perikarya, astroglia and oligodendroglia isolated from bovine brain, J. Lipid. Res. 18 (1977) 115–117.PubMedGoogle Scholar
  9. 9.
    Dorman, R.V., Freysz, L., Mandel, P. and Horrocks, L.S., Plasmalogenase activities in the brains of Jimpy and Quaking mice, J. Neurochem., in press.Google Scholar
  10. 10.
    Dowling, P.C., Kim, S.U. and Murray, M.R., Serum 19S and 7S demyelinating antibodies in multiple sclerosis, J. Immunol. 101 (1968) 1101–1104.PubMedGoogle Scholar
  11. 11.
    Gottfried, E.L. and Rapport, M.M., The biochemistry of plasmalogens. I. Isolation and characterization of phosphatidal choline, a pure native plasmalogen, J. Biol. Chem. 237 (1962) 329–333.PubMedGoogle Scholar
  12. 12.
    Griesemer, R.A. and Gibson, J.P., The gnotobiotic dog, Lab. Animal Care 13 (Suppl.) (1963) 643–648.Google Scholar
  13. 13.
    Hall, S., The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord, J. Cell. Sci. 10 (1972) 535–546.PubMedGoogle Scholar
  14. 14.
    Hall, S. and Gregson, N.A., The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse, J. Cell. Sci. 9 (1971) 769–789.PubMedGoogle Scholar
  15. 15.
    Horrocks, L.A., The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin-layer chromatography, J. Lipid Res. 9 (1968) 469–472.PubMedGoogle Scholar
  16. 16.
    Horrocks, L.A., Content, composition and metabolism of mammalian and avian lipids that contain ether groups, in Ether Lipids–Chemistry and Biology ( F. Snyder, ed.) Academic Press, New York (1972) pp. 177–272.Google Scholar
  17. 17.
    Horrocks, L.A. and Fu, S.C., Pathway for hydrolysis of plasmalogens in brain, in Enzymes of Lipid Metabolism (S. Gatt, L. Freysz and P. Mandel, eds.) Plenum Press, New York, in press.Google Scholar
  18. 18.
    Horrocks, L.A., Toews, A.D., Locke, G.E. and Yashon, D., Changes in myelin following trauma of spinal cord in monkey, Neurobiology 3 (1973) 256–263.PubMedGoogle Scholar
  19. 19.
    Horrocks, L.A., Sun, G.Y. and D’Amato, R.A., Changes in brain lipids during aging, in Neurobiology of Aging (J.M. Ordy and K.R. Brizzee, eds.) Plenum Press, New York (1975) pp. 359–369.Google Scholar
  20. 20.
    Hughes, D. and Field, E.J., Myelotoxicity of serum and spinal fluid in multiple sclerosis: a critical assessment, Clin. Exp. Immunol. 2 (1967) 295–309.Google Scholar
  21. 21.
    Koestner, A., McCullough, B., Krakowka, G.S., Long, J.F. and Olsen, R.G., Canine distemper: A virus induced demyelinating encephalomyelitis in slow virus diseases, in Symposium on Slow Viruses ( W. Zeman and E.H. Lennett, eds.) Williams and Wilkins, Baltimore (1974) pp. 86–101.Google Scholar
  22. 22.
    Krakowka, S., Mc.Cullough, B., Koestner, A. and Olsen, R., Myelin-specific autoantibodies associated with central nervous system demyelination in canine distemper virus infection, Infection and Immunity 8 (1973) 819–827.PubMedGoogle Scholar
  23. 23.
    Mandel, P., Nussbaum, J.L., Neskovic, N.M., Sarlieve, L.L., Farkas, E. and Robain, O., in Proceedings, Symposium of the International Union of Biochemistry ( Y. Pollak and J.W. Lee, eds.) Australian and New Zealand Book Co., Sidney (1973) pp. 410–422.Google Scholar
  24. 24.
    Marburg, O., The so-called acute multiple sclerosis, J. Psychiat. Neurol. 27 (1906) 213–312.Google Scholar
  25. 25.
    McCullough, B., Krakowka, S. and Koestner, A., Experimental canine distemper virus-induced demyelination, Laboratory Investigation 31 (1974) 216–222.PubMedGoogle Scholar
  26. 26.
    McMartin, D.N., Koestner, A. and Long, J.F., Enzyme activities associated with the demyelinating phase of canine distemper. I. Beta-glucuronidase, acid and neutral proteinase, Acta Neuropath. (Berl.) 22 (1972) 275–287.CrossRefGoogle Scholar
  27. 27.
    Mc Martin, D.N., Horrocks, L.A. and Koestner, A., Enzyme activities associated with the demyelinating phase of canine distemper. II. Plasmalogenase, Acta Neuropath. (Berl.) 22 (1972) 288–293.CrossRefGoogle Scholar
  28. 28.
    Miller, S.L., Benjamins, J.A. and Morell, P., Metabolism of glycerophospholipids of myelin and microsomes in rat brain, J. Biol. Chem. 252 (1977) 4025–4037.PubMedGoogle Scholar
  29. 29.
    Spanner, S., Ph.D. Thesis (1966) University of Birmingham, England.Google Scholar
  30. 30.
    Suzuki, Y., Tucker, S.H., Rorke, L.B. and Suzuki, K., Ultra-structural and biochemical studies of Schilder’s disease, J. Neuropath. Exper. Neurol. 29 (1970) 405–419.CrossRefGoogle Scholar
  31. 31.
    Thompson, R.H.S., Myelinolytic mechanisms, Proc. Roy. Soc. Med. 54 (1961) 30–33.PubMedGoogle Scholar
  32. 32.
    Webster, G.R. and Cooper, M., On the site of action of phosphatide acylhydrolase activity of rat brain homogenates on lecithin, J. Neurochem. 15 (1968) 795–802.PubMedCrossRefGoogle Scholar
  33. 33.
    Wise, G., Stevens, M.E., Shuttleworth, E.C., Donahue, T. and Allen, J.N., An experimental model for the evaluation of ischemia of the cerebral hemispheres, submitted for publication (1977).Google Scholar
  34. 34.
    Woelk, H. and Kanig, K., Phospholipid metabolism in experimental allergic encephalomyelitis - activity of brain phospholipase A toward specifically labelled glycerophospholipids, J. Neuro-chem. 23 (1974) 739–744.Google Scholar
  35. 35.
    Woelk, H. and Peiler-Ichikawa, K., Zur Aktivität der Phospho-lipase A gegenüber verschiedenen 1-Alk-1’-enyl-2-aryl-und 1-Alkyl-acyl-verbindungen während der Multiplen Sklerose, J. Neurol. 207 (1974) 319–326.PubMedCrossRefGoogle Scholar
  36. 36.
    Woelk, H. and Porcellati, G., Subcellular distribution and kinetic properties of rat brain phospholipases A and A2, Hoppe-Seyler’s Z. Physiol. Chem. 354 (1973) 90–160.CrossRefGoogle Scholar
  37. 37.
    Woelk, H., Kanig, K. and Peiler-Ichikawa, K., Phospholipid metabolism in experimental allergic encephalomyelitis–activity of mitochondrial phospholipase A of rat brain toward specifically labelled 1,2, diacyl-,l1-alk-1’-enyl-2- acyl-and 1-alkyl-2-acyl-sn-glycero-3-phosphorylcholine, J. Neurochem. 23 (1974) 745–750.PubMedCrossRefGoogle Scholar
  38. 38.
    Yanagihara, T. and Cumings, J.N., Alterations of phospholipids, particularly plasmalogens, in the demyelination of multiple sclerosis as compared with that of cerebral oedema, Brain 92 (1969) 59–70.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lloyd A. Horrocks
    • 1
  • Sheila Spanner
    • 2
  • Rita Mozzi
    • 1
    • 5
  • Sheung Chun Fu
    • 1
  • Robert A. D’Amato
    • 3
  • Steven Krakowka
    • 4
  1. 1.Department of Physiological ChemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Pharmacology (Pre-Clinical)University of BirminghamBirminghamUK
  3. 3.Department of PathologyThe Ohio State UniversityUSA
  4. 4.Department of Veterinary PathobiologyThe Ohio State UniversityUSA
  5. 5.Istituto di Chimica BiologicaUniversita di PerugiaPerugiaItaly

Personalised recommendations