Skip to main content

The Action of Trypsin on Central and Peripheral Nerve Myelin

  • Chapter
Myelination and Demyelination

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 100))

Summary

In contrast to other studies, our results demonstrate that low concentration of trypsin degrades a high proportion of proteolipid from CNS myelin. The Wolfgram protein and BP are vulnerable and completely lost on trypsinolysis, perhaps accounting for some of the peptides retained by the myelin. In PNS myelin, the major PO protein, a hydrophobic glycoprotein, is readily degraded to a stable 18,000–19,000 molecular weight unit, referred to as TPO protein, still retaining the carbohydrate unit which probably exists as a nonasaccharide grouping. Production of the TPO glycoprotein results from cleavage of a lysinyl-methionine or arginylmethionine linkage probably found approximately 80–100 residues from the NH2 -terminal isoleucine of the PO molecule. This linkage must be especially accessible to trypsin since the TPO protein is also generated in high yield when isolated PO protein is treated with trypsin in solution for 0.5 hours. Further incubation for 24 hours fully degrades the TPO protein to over 20 tryptic peptides, shown by peptide mapping, unlike the situation in myelin where the TPO unit is stable and resists further proteolysis.

The TPO unit is also produced when PO protein is treated with BrCN. The PO protein contains 3 methionine residues but presumably the methionine residue in the trypsin-sensitive region is crucial; cleavage leads to the same TPO unit minus NH2-terminal methionine. Another methionine residue also exists in the TPO protein but it may be resistant to BrCN cleavage or else occupy a near-end position.

Other proteins were also identified on PAGE of trypsinized PNS myelin: albumin, P2 protein, and PO protein. Albumin and P2 protein were identified in the acidic extract by reaction with specific antibody. The PO protein was isolated; it moved similarly to standard protein on SDS-PAGE and gave the appropriate amino acid analysis. However, it cannot be determined at this time whether a portion of these proteins remains because they are partially inaccessible to trypsin, or else are slightly attacked and thus represent early stages of trypsinolysis. The P2 protein of trypsinized myelin appears to migrate slightly faster than standard P2 protein on PAGE. Further work should clarify this point.

Amino acid analysis and sequence data show that the PO protein is particularly hydrophobic, very likely existing in PNS myelin as an amphipathic molecule which penetrates the bilayer but which has a hydrophilic portion exposed. It is this hydrophilic region that contains much lysine, particularly the crucial lysinyl-methionine linkage, that is so trypsin-sensitive. Determination of the amino acid sequence of terminal portions of the isolated PO and TPO proteins serves to firmly establish the PO protein as a unique entity probably exclusive to PNS myelin. It can be concluded that the study of trypsin activity toward PNS myelin has made possible a new understanding of how proteins are positioned in the membrane, and provided valuable insight into the PO protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EAE:

experimental allergic encephalomyelitis

EAN:

experimental allergic neuritis

BP:

myelin basic protein

PAGE:

polyacrylamide gel electrophoresis

PLP:

proteolipid protein

References

  1. Adams, C. and Bayliss, 0., Histochemistry of myelin V: trypsindigestible and trypsin-resistant protein, J. Histochem. Cytochem. 16 (1968) 110–114.

    Article  PubMed  CAS  Google Scholar 

  2. Banik, N. and Davison, A.N., Lipid and basic protein in interaction in myelin, Biochem. J.143 (1974) 39–45.

    PubMed  CAS  Google Scholar 

  3. Brostoff, S., Burnett, P., Lampert, P. and Eylar, E.H., Isolation and partial characterization of a protein from sciatic nerve myelin responsible for experimental allergic neuritis, Nature 235 (1972) 210–212.

    CAS  Google Scholar 

  4. Brostoff, S. and Eylar, E.H., The proposed amino acid sequence of the P1 protein of rabbit sciatic nerve myelin, Arch. Biochem. Biophys. 153 (1972) 590–598.

    Article  PubMed  CAS  Google Scholar 

  5. Brostoff, S., Karkhanis, Y., Carlo, D., Reuter, W. and Eylar, E.H., Isolation and partial characterization of the major proteins of rabbit sciatic nerve myelin, Brain Res. 86 (1975) 449–458.

    Article  CAS  Google Scholar 

  6. Buletza, G. and Smith, M.E., Enzymic hydrolysis of myelin basic protein and other proteins in the CNS and lymphoid tissues from normal and demyelinating rats, Biochem. J. 156 (1976) 627–633.

    PubMed  CAS  Google Scholar 

  7. DaSilva, P. and Miller, R., Membrane particules on fraction faces of frozen myelin, Proc. Nat. Acad. Sci. U.S.A. 72 (1976) 4046.

    Google Scholar 

  8. Dickinson, J., Jones, K., Aparicio, S. and Lumsden, C., Localization of encephalitogenic basic protein in the intraperiod line of lamellar myelin, Nature 227 (1970) 1133–1134.

    Article  PubMed  CAS  Google Scholar 

  9. Einstein, E., Csejtey, J. and Marks, N., Degradation of encephalitogenic protein by purified brain acid proteinase, FEBS Lett. 1 (1968) 191–195.

    Article  PubMed  Google Scholar 

  10. Einstein, E.R., Csejtey, J., Davis, W., Lajtha, A. and Marks, N., Enzymatic degration of the encephalitogenic protein, Int. Arch. Allergy 36 (1969) 363–375.

    PubMed  Google Scholar 

  11. Everly, J., Brady, R. and Quarles, R., Evidence that the major protein in rai. sciatic nerve myelin is glycoprotein, J. Neurochem. 21 (1973) 329–334.

    Article  PubMed  CAS  Google Scholar 

  12. Eylar, E.H., Brostoff, S., Hashim, G., Caccam, J. and Burnett, P., Basic Al protein of the myelin membrane, the complete amino acid sequence, J. Biol. Chem. 246 (1971) 5770–5784.

    PubMed  CAS  Google Scholar 

  13. Eylar, E.H., Salk, J. Beveridge, G. and Brown, L., Experimental allergic encephalomyelitis: an encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys. 132 (1969) 34–48.

    Article  CAS  Google Scholar 

  14. Govindarajan, K., Rauch, H., Clausen, J. and Einstein, E.R., Changes in cathepsins B-1 and D, neutral-proteinase, and 2′,3′-cyclic-nucleotide -3′phosphodydrolase activities in monkey brain with experimental allergic encephalomyelitis, J. Neurol. Sci. 23 (1974) 295–306.

    Article  PubMed  CAS  Google Scholar 

  15. Greenfield, S., Brostoff, S., Eylar, E.H. and Morell, P., Protein composition of myelin of the PNS, J. Neurochem. 20 (1973) 1207–1216.

    Article  PubMed  CAS  Google Scholar 

  16. Hashim, G. and Eylar, E.H., Allergic encephalomyelitis: Enzymatic degradation of the encephalitogenic basic protein from bovine spinal cord, Arch. Biochem. Biophys. 129 (1969) 635–644.

    Article  CAS  Google Scholar 

  17. Herndon, R., Rauch, H. and Einstein, E., Immuno-electron microscopic localization of the encephalitogenic basic protein in myelin, Immunol. Commun. 2 (1973) 163–172.

    CAS  Google Scholar 

  18. Ishaque, A., Roomi, M.W., Khan, N. and Eylar, E.H., Myelin protein: the composition of the P2 protein from rabbit sciatic nerve, Biochem. Biophys. Acta (1977) in press.

    Google Scholar 

  19. Jolles, J., Nussbaum, J-L., Schoentgen, F., Mandel, P. and Jolles, P., Structural data concerning the major rat brain myelin proteolipid P7 apoprotein, FEBS Lett. 74 (1977) 190–194.

    Article  PubMed  CAS  Google Scholar 

  20. Kies, M., Thompson, E. and Alvord, E., The relationship of myelin proteins to experimental allergic encephalomyelitis, Ann. N.Y. Acad. Sci. 122 (1965) 148–160.

    Article  PubMed  CAS  Google Scholar 

  21. Kitamura, K., Suzuki, M. and Uyemura, K., Purification and partial characterization of two glycoproteins in bovine PNS myelin membrane, Biochem. Biophys. Acta. 455 (1976) 806–816.

    Article  CAS  Google Scholar 

  22. Lampert, P.W., Demyelination and remyelination in experimental allergic encephalomyelitis, J. Neuropath. exp. Neurol. 24 (1965) 371–385.

    Article  Google Scholar 

  23. Lees, M.B., Messinger, B. and Burnham, J., Tryptic hydrolysis of brain proteolipid, Biochem. Biophys. Res. Commun. 28 (1967) 185–190.

    Article  CAS  Google Scholar 

  24. London, Y. and Vossenberg, F., Specific interactions of central nervous myelin basic proteins with lipids: Specific regions of the protein sequence protected from the proteolYtic action of trypsin, Biochem. Biophys. Acta. 307 (1973) 478–490.

    Article  CAS  Google Scholar 

  25. Moscarello, M., personal communication.

    Google Scholar 

  26. Nakao, A., Davis, W. and Einstein, E., Basic proteins from the acidic extract of bovine spinal cord, Biochem. Biophys. Acta. 130 (1966) 171–179.

    Article  Google Scholar 

  27. Norton, W.T., Cammer, W., Bloom, B.R. and Gordon, S., Possible mechanisms of inflammatory demyelination: Macrophage secretion products. Myelination and demyelination: Recent chemical advances, Satellite symposium of the ISN, Helsinki, August 1977.

    Google Scholar 

  28. Peterson, R., Electron microscopy of trypsin-digested PNS myelin, J. Neurocyt. 4 (1975) 115–120.

    Article  CAS  Google Scholar 

  29. Peterson, R.G., Myelin protein changes with digestion of whole sciatic nerve in trypsin, Life Sci. 18 (1976) 845–850.

    Article  PubMed  CAS  Google Scholar 

  30. Poduslo, J. and Braun, P., Topographical arrangement of membrane proteins in the intact myelin sheath, J. Biol. Chem. 250 (1975) 1099.

    PubMed  CAS  Google Scholar 

  31. Raghavan, S., Rhoads, D. and Kanfer, J., The effects of trypsin on purified myelin, Biochem. Biophys. Acta. 328 (1973) 205–212.

    CAS  Google Scholar 

  32. Rauch, H., Einstein, E.R., Csejtey, J., Enzymatic degradation of myelin basic protein in central nervous system lesions of monkeys with EAE, Neurobiol. 3 (1973) 195–205.

    CAS  Google Scholar 

  33. Riekkinen, P., Clausen, J. and Arstila, A., Further studies on neutral proteinase activity of CNS myelin, Brain Res. 19 (1970) 213.

    Article  PubMed  CAS  Google Scholar 

  34. Roomi, M.W., Ishaque, A., Breckenridge, W., Khan, N. and Eylar, E.H., The PO protein: A Glycoprotein of PNS myelin, Trans. Am. Neurochem. Soc. 8 (1977) 158.

    Google Scholar 

  35. Roomi, M.W., Ishaque, A., Khan, N. and Eylar, E.H., Glycoproteins and albumin in PNS myelin, J. Neurochem. (1977) in press.

    Google Scholar 

  36. Singer, S.J., The molecular organization of membranes, Ann. Rev. Biochem. 43 (1974) 805–845.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, M., Sedgewick, L. and Tagg, J., Proteolytic enzymes in experimental demyelination in rat and monkey, J. Neurochem. 23 (1974) 965–971.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki, K., Poduslo, S. and Norton, W.T., Gangliosides in the myelin fraction of developing rats, Biochem. Biophys. Acta. 144 (1967) 375.

    CAS  Google Scholar 

  39. Wisniewski, H., Prineas, J. and Raine, C., An ultrastructural study of demyelination and remyelination, Lab. Invest. 21 (1969) 105–118.

    CAS  Google Scholar 

  40. Wood, D., Epand, R. and Moscarello, M., Localization of the basic protein and lipophilin in myelin membrane with a non-penetrating reagent, Biochem. Biophys. Acta. 467 (1977) 120–129.

    Article  CAS  Google Scholar 

  41. Wood, J. and Dawson, R.M.C., A major myelin glycoprotein of sciatic nerve, J. Neurochem. 21 (1973) 717–719.

    Article  PubMed  CAS  Google Scholar 

  42. Wood, J.G. and Dawson, R., Some properties of a major structural glycoprotein of sciatic nerve, J. Neurochem. 22 (1974) 627–630.

    Article  PubMed  CAS  Google Scholar 

  43. Wood, J. and Dawson, R.M.C., Lipid and protein changes in sciatic nerve during degeneration, J. Neurochem. 22 (1974) 631–635.

    Article  PubMed  CAS  Google Scholar 

  44. Wood, J.G., Dawson, R. and Hauser, H., Effect of proteolytic, attack on the structure of CNS myelin membrane,J.Neurochem 22 (1 974 ) 637–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Eylar, E.H., Roomi, M.W. (1978). The Action of Trypsin on Central and Peripheral Nerve Myelin. In: Palo, J. (eds) Myelination and Demyelination. Advances in Experimental Medicine and Biology, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2514-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2514-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2516-1

  • Online ISBN: 978-1-4684-2514-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics