Skip to main content

Reactive Sites and the Evolution of Transfer RNAs

  • Chapter
The Genetic Mechanism and the Origin of Life
  • 99 Accesses

Abstract

Before the evolutionary relations of tRNAs can be examined, those specific sites in tRNA molecular structure that are of possible importance in a particular function need examination, in order to distinguish functional and evolutionary influences. Among the activities in which a given nucleotide may be especially significant are included the maintenance of a secondary or tertiary structure, recognition by the ligase, and attachment to the ribosome, as well as those codon—anticodon interactions that have already received attention (Chapter 7; Section 7.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapters 7 and 8: Primary Structure of tRNAs

  • Barrell, B. G., Coulson, A. R., and McClain, W. H. 1973. Nucleotide sequence of a glycine tRNA coded by bacteriophage T4. FEBS Lett. 37: 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Hill, C. W., Combriato, G., Stemhart, W., Riddle, D. L., and Carbon, J. 1973. The nucleotide sequence of the GGG-specific glycine tRNA of E. coli. and Salmonella typhimurium. J. Biol. Chem. 248: 4252–4262.

    CAS  Google Scholar 

  • Hill, C. W., Squires, C., and Carbon, J. 1970. Structural genes for two glycine tRNA species. J. Mol. Biol. 52: 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absense of ribothymidine in specific tRNAs. I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Riddle, D. L., and Carbon, J. 1973. Frameshift suppression: A nucleotide addition in the anticodon of a glycine tRNA. Nature New Biol. 242: 230–234.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J. 1972: Structures of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–46.

    Article  CAS  Google Scholar 

  • Roberts, R. J. 1974. Staphylococcal tRNAs. II. Sequence analysis of isoaccepting glycine tRNA IA and IB from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4787–4796.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting glycine tRNAs from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.

    PubMed  CAS  Google Scholar 

  • Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.

    PubMed  CAS  Google Scholar 

  • Stahl, S., Paddock, G., and Abelson, J. 1973. T4 bacteriophage tRNA°1. Biochem. Biophys. Res. Comm. 54: 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, T. S., Roberts, R. J., and Strominger, J. L. 1971. Novel species of RNA. Nature. 230: 36–38.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M. 1973. The nucleotide sequence of tRNAch from yeast. Biochem. Biophys. Res. Comm. 50: 779–784.

    Article  PubMed  CAS  Google Scholar 

  • Zachau, H. G. 1969. Transfer ribonucleic acids. Angew. Chem. (Int. Ed.). 8: 711–727.

    Article  CAS  Google Scholar 

  • Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswrick, J. R., and Zamir, A. 1965a. Structure of a ribonucleic acid. Science., 147: 1462–1465.

    Article  PubMed  CAS  Google Scholar 

  • Holley, R. W., Everett, G. A., Madison, J. T., and Zamir, A. 1965b. Nucleotide sequences in the yeast alanine tRNA. J. Biol. Chem. 240: 2122–2127.

    PubMed  CAS  Google Scholar 

  • Merrill, C. R. 1968. Reinvestigation of the primary structure of yeast alanine tRNA. Biopolymers. 6: 1727–1735.

    Article  Google Scholar 

  • Murao, K., Hasegawa, T., and Ishikura, H. 1976. 5-methoxyuridine: A new minor constituent located in the first position of the anticodon of tRNAma, tRNAThr, and tRNAval from B. subtilis. Nucl. Acids Res. 3:2851–2857.

    Google Scholar 

  • Penswick, J. R., Martin, R., and Dirheimer, G. 1975. Evidence supporting a revised sequence for yeast alanine tRNA. FEBS Lett. 50: 28–31.

    Article  PubMed  CAS  Google Scholar 

  • Takemura, S., and Ogawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 323–333.

    CAS  Google Scholar 

  • Takemura, S., Ogawa, K., and Nakazawa, K. 1972. Nucleotide sequence of alanine tRNA, from Torulopsis utilis. FEBS Lett. 25: 29–32.

    Article  CAS  Google Scholar 

  • Takemura, S., Ogawa, K., and Nakazawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 313–322.

    CAS  Google Scholar 

  • Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys. Res. Comm. 60: 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M., Kaziro, Y., and Ukita, T. 1968. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA. Biochim. Biophys. Acta. 166: 646–655.

    PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1971. Structure of asparate-tRNA from brewer’s yeast. Nature New Biol. 230: 125–126.

    Article  PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972a. The primary structure of aspartate tRNA from brewer’s yeast. Complete digestion with pancreatic ribonuclease and T, ribonuclease. Biochim. Biophys. Acta. 259: 198–209.

    PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972b. The primary structure of aspartate

    Google Scholar 

  • tRNA from brewer’s yeast. II. Partial digestions with pancreatic ribonuclease and T1 ribonuclease and derivation of complete sequence. Biochim. Biophys. Acta. 259: 210–222.

    Google Scholar 

  • Harada, F., and Nishimura, S. 1972. Possible anticodon sequences of tRNA’, tRNAAS“, and tRNAAaP from E. coli. B. Universal presence of nucleoside Q in the first position of the anticodon of these transfer ribonucleic acids. Biochemistry. 11: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Harada, F., Yamaizumi, K., and Nishimura, S. 1972. Oligonucleotide sequences of RNase T1 and pancreatic RNase digests of E. coli. aspartic acid tRNA. Biochem. Biophys. Res. Comm. 49: 1605–1609.

    Article  PubMed  CAS  Google Scholar 

  • Keith, G., Gangloff, J., Ebel, J. P., and Dirheimer, G. 1970. Etablissement de la sĂ©quence de nuclĂ©otides de l’aspartate-t-RNA de levure de bière. C. R. Acad. Sci. Paris., 271: 613–616.

    CAS  Google Scholar 

  • Kobayashi, T., Irie, T., Yoshida, M., Takeishi, K., and Ukita, T. 1974. The primary structure of yeast glutamic acid tRNA specific to the GAA codon. Biochim. Biophys. Acta. 366: 168–181.

    PubMed  CAS  Google Scholar 

  • Munninger, K. O., and Chang, S. H. 1972. A fluorescent nucleoside from glutamic acid tRNA of E. coli. K12. Biochem. Biophys. Res. Comm. 46: 1837–1842.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, Z., Murao, K., Yahagi, T., von Minden, D. L., McCloskey, J. A., and Nishimura, S. 1972. Characterization of C+ located in the first position of the anticodon of E. coli. tRNAMet as N4-acetylcytidine. Biochim. Biophys. Acta. 262: 209–213.

    CAS  Google Scholar 

  • Ohashi, Z., Saneyoshi, M., Harada, F., Hara, H., and Nishimura, S. 1970. Presumed anticodon structure of glutamic acid tRNA from E. coli: A possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem. Biophys. Res. Comm. 40: 866–872.

    Article  CAS  Google Scholar 

  • Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Takeishi K., and Ukita, T. 1970. Anticodon structure of GAA-specific glutamic acid tRNA from yeast. Biochem. Biophys. Res. Comm. 39: 852–857.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M., Takeishi, K., and Ukita, T. 1971. Structural studies on a yeast glutamic acid tRNA specific to GAA codon. Biochim. Biophys. Acta. 228: 153–166.

    PubMed  CAS  Google Scholar 

  • Bayev, A. A., Venkstern, T. V., Mirzabekov, A. D., Krutilina, A. I., Li, L., and Axelrod, V. D. 1967. Primary structure of the valine tRNA. Mol. Biol. 1: 754–758.

    Google Scholar 

  • Bonnet, J., Ebel, J. P., and Dirheimer, G. 1971. Primary structure of tRNA)a’, from brewer’s yeast. FEBS Lett. 15: 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, J., Ebel, J. P., Dirheimer, G., Shershneva, L. P., Krutilina, A. I., Venkstern, T. V., and Bayer, A. A. 1974. The corrected nucleotide sequence of valine tRNA from baker’s yeast. Biochimie. 56: 1211–1213.

    Article  PubMed  CAS  Google Scholar 

  • Harada, F., Kimura, F., and Nishimura, S. 1969. Nucleotide sequence of valine tRNA from E. coli. B. Biochim. Biophys. Acta. 195: 590–592.

    PubMed  CAS  Google Scholar 

  • Harada, F., Kimura, F., and Nishimura, S. 1971. Primary sequence of tRNA’, from E. coli. B. Biochemistry. 10: 3269–3283.

    Article  PubMed  CAS  Google Scholar 

  • Kimura-Harada, F., Saneyoshi, M., and Nishimura, S. 1971. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 13: 335–338.

    Google Scholar 

  • Mirzavekov, A. D., Lastit, D., Leoina, E. S., Undritsov, I. M., and Baev, A. A. 1972. The acceptor activity of dissected baker’s yeast tRNA°a1: Localization of two possible recognition sites of valyl-tRNA ligase. Mol. Biol. 6: 69–84.

    PubMed  CAS  Google Scholar 

  • Mizutani, T., Miyazaki, M., and Takemura, S. 1968. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 64: 839–848.

    CAS  Google Scholar 

  • Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. tRNA I. Biochem. Biophys. Res. Comm. 38: 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W. 1975b. The primary structure of the major cytoplasmic valine tRNA of mouse myeloma cells. Eur. J. Biochem. 51: 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W., and Clark, B. F. 1974a. The nucleotide sequences of cytoplasmic methionine and valine tRNAs from mouse myeloma cells. FEBS Lett. 47: 56–59.

    Article  PubMed  CAS  Google Scholar 

  • Takada-Gurrier, C., Grosjean, H. G., Dirheimer, G., and Keith, G. 1976. The primary structure of tRNA2a’ from B. stearothermophilus. FEBS Lett. 62: 1–3.

    Article  Google Scholar 

  • Takemura, S., Mizutani, T., and Miyazaki, M. 1968a. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 63: 277–278.

    CAS  Google Scholar 

  • Takemura, S., Mizutani, T., and Miyazaki, M. 1968b. The primary structure of valine-I tRNA from Torulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1. J. Biochem. 64: 827–837.

    PubMed  CAS  Google Scholar 

  • Yaniv, M., and Barrell, B. G. 1969. Nucleotide sequence of E. coli. B tRNAva’. Nature. 222: 278–279.

    Article  PubMed  CAS  Google Scholar 

  • Yaniv, M., and Barrell, B. G. 1971. Sequence relationship of three valine acceptor tRNAs from E. coli. Nature New Biol. 233: 113–114.

    CAS  Google Scholar 

  • Zachau, H. G. 1972. Transfer ribonucleic acids. In: Bosch, L., ed., The Mechanism of Protein Synthesis and its Regulation., Amsterdam, North-Holland Publishing Co., p. 173–217.

    Google Scholar 

  • Blank, H. U., and Sö11, D. 1971. The nucleotide sequence of two leucine tRNA species from E. coli. K12. Biochem. Biophys. Res. Comm. 43: 1192–1197.

    Article  PubMed  CAS  Google Scholar 

  • Dube, S. K., Marcker, K. A., and Yudelevich, A. 1970. The nucleotide sequence of a leucine tRNA from E. coli. FEBS Lett. 9: 168–170.

    Article  CAS  Google Scholar 

  • Harada, F., Sato, S., and Nishimura, S. 1972. Unusual CCA-stem structure of E. coli. B tRNA1 s FEBS Lett. 19: 352–355.

    CAS  Google Scholar 

  • Singer, C. E., and Smith, G. R. 1972. Histidine regulation in Salmonella typhimurium. XIII. Nucleotide sequence of histidine tRNA. J. Biol. Chem. 247: 2983–3000.

    Google Scholar 

  • Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 73–74.

    Article  Google Scholar 

  • Comer, M. M., Foss, K., and McClain, W. H. 1975. A mutation of the wobble nucleotide of a bacteriophage T4 tRNA. J. Mol. Biol. 99: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Folk, W. R., and Yaniv, M. 1972. Coding properties and nucleotide sequences of E. coli. glutamine tRNAs. Nature New Biol. 237: 165–166.

    PubMed  CAS  Google Scholar 

  • Seidman, J. G., Corner, M. M., and McClain, W. H. 1974. Nucleotide alterations in the bacteriophage T4 glutamine tRNA that affect ochre suppressor activity. J. Mol. Biol. 90: 677–689.

    Article  PubMed  CAS  Google Scholar 

  • Murao, K., Tanabe, T., Ishii, F., Namiki, M., and Nishimura, S. 1972. Primary sequence of arginine tRNA from E. coli. Biochem. Biophys. Res. Comm., 47: 1332–1337.

    Article  CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, G. 1972. Nucleotide sequence of tRNAiltrg from brewer’s yeast. FEBS Lett. 28: 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, C. 1975a. The primary structure of tRNAr from brewer’s yeast. Eur. J. Biochem. 56: 521–526.

    Article  PubMed  CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, G., 1975. Partial digestion with Ti RNase and primary sequence of yeast tRNAllrg. Eur. J. Biochem. 56: 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974.. Transfer RNA biosynthesis: The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.

    Google Scholar 

  • Seidman, J. G., Barrell, B. G., and McClain, W. H. 1975. Five steps in the conversion of a large precusor RNA into bacteriophage proline and serine tRNAs. J. Mol. Biol. 99: 733–760.

    Article  PubMed  CAS  Google Scholar 

  • Madison, J. T., and Boguslawski, S. J. 1974. Partial digestion of a yeast lysine tRNA and reconstruction of the nucleotide sequence. Biochemistry. 13: 524–527.

    Article  PubMed  CAS  Google Scholar 

  • Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1972. Nucleotide sequence of a lysine tRNA from baker’s yeast. Science. 176: 687–689.

    Article  PubMed  CAS  Google Scholar 

  • Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1974. Oligonucleotide composition of a yeast lysine tRNA. Biochemistry. 13: 518–523.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. J., Ley, A. N., D’Obrenan, P., and Mitra, S. K. 1971. The structure and coding specificity of a lysine tRNA from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem., 246: 7817–7829.

    PubMed  CAS  Google Scholar 

  • Smith, C. J., Teh, H. S., Ley, A. N., and D’Obrenan, P. 1973. The nucleotide sequences of the major and minor lysine tRNAs from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem. 248: 4475–4485.

    PubMed  CAS  Google Scholar 

  • Harada, F., and Nishimura, S. 1974. Purification and characterization of AUA specific isoleucine tRNA from E. coli. B. Biochemistry. 13: 300–307.

    Article  PubMed  CAS  Google Scholar 

  • Takemura, S., Murakami, M., and Miyazaki, M. 1969a. Nucleotide sequence of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 489–491.

    CAS  Google Scholar 

  • Takemura, S., Murakami, M., and Miyazaki, M., 1969b. The primary structure of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 553–566.

    CAS  Google Scholar 

  • Yarus, M., and Barre11, B. G. 1971. The sequence of nucleotides in tRNAne from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.

    Article  PubMed  CAS  Google Scholar 

  • Cory, S., and Marcker, K. A. 1970. The nucleotide sequence of methionine tRNAM. J. Biochem. 12: 177–194.

    CAS  Google Scholar 

  • Cory, S., Marcker, K. A., Dube, S. K., and Clark, B. F. C. 1968. Primary structure of a methionine tRNA from E. coli. Nature. 220: 1039–1040.

    CAS  Google Scholar 

  • Dube, S. K., and Marcker, K. A. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 256–262.

    Article  PubMed  CAS  Google Scholar 

  • Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S. 1968. Nucleotide sequence of Nformyl-methionyl-transfer RNA. Nature. 218: 233–234.

    Article  Google Scholar 

  • Dube, S. K. Marcker, K. A., Clark, B. F. C., and Cory, S. 1969. The nucleotide sequence of Nformyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 244–255.

    CAS  Google Scholar 

  • Ecarot-Charrier, B., and Cedergren, R. J. 1976. The preliminary sequence of tRNAFet from Anacystis nidulans. compared with other initiator tRNAs. FEBS Lett. 63: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Egan, B. Z., Weiss, J. F., and Kelmers, A. D. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E.coli. K-12MO. Biochem. Biophys. Res. Comm. 55: 320–327.

    Article  PubMed  CAS  Google Scholar 

  • Gruhl, H., and Feldmann, H. 1975. The primary structure of a noninitiating methionine specific tRNA from brewer’s yeast. FEBS Lett. 57: 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Högenauer, G., Turnowsky, F., and Unger, F. M. 1972. Codon-anticodon interaction of methionine specific tRNAs. Biochem. Biophys. Res. Comm. 46: 2100–2106.

    Article  PubMed  Google Scholar 

  • Ishikura, H., Yamada, Y., Murao, K., Saneyoshi, M., and Nishimura, S. 1969. The presence of N- [9-(β-D-ribofuranosyl)purine-6yl-carbomoyl]threonine in serine, methionine, and lysine tRNAs from E. coli. Biochem. Biophys. Res. Comm. 37: 990–995.

    Article  CAS  Google Scholar 

  • Koiwai, O., and Miyazaki, M. 1976. The primary structure of non-initiator tRNAMgit from baker’s yeast. J. Biochem. 80: 951–959.

    PubMed  CAS  Google Scholar 

  • Petrissant, G., and Boisnard, M. 1974. ParticularitĂ©s structurales du mĂ©thionine tRNA,M„et de foie de lapin. Biochimie. 56: 787–789.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W. 1975a. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. Eur. J. Biochem. 51: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W., and Clark, B. F. C. 1974b. Primary structure of a mouse myeloma cell initiator tRNA. Nature. 247: 516–518.

    Article  PubMed  CAS  Google Scholar 

  • Simsek, M., and RajBhandary, U. L. 1972. The primary structure of yeast initiator tRNA. Biochem. Biophys. Res. Comm. 49: 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Simsek, M., RajBhandary, U. L., Boisnard, M. and Petrissant G. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator tRNAs. Nature. 247: 518–520.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, Y., and Ishikura, H. 1975. Nucleotide sequence of initiator tRNA from B. subtilis. FEBS Lett. 54: 155–158.

    Article  CAS  Google Scholar 

  • Ish-Horowicz, D., and Clark, B. F. C. 1973. The nucleotide sequence of a serine tRNA from E. coli. J. Biol. Chem. 248: 6663–6673.

    CAS  Google Scholar 

  • Rogg, H., MĂĽller, P., and Staehelin, M. 1975. Nucleotide sequences of rat liver serine tRNA. Eur. J. Biochem. 53: 115–127.

    Article  CAS  Google Scholar 

  • Yamada, Y., and Ishikura, H. 1973. Nucleotide sequence of tRNA3er from E. coli. FEBS Lett. 29: 231–234.

    Article  CAS  Google Scholar 

  • Clarke, L., and Carbon, J. 1974. The nucleotide sequence of a threonine tRNA from E. coli. J. Biol. Chem. 249: 6874–6885.

    CAS  Google Scholar 

  • Kuntzel, B., Weissenbach, J. and Dirheimer, G. 1972. The sequence of nucleotides in tRNAftig from brewer’s yeast. FEBS Lett. 25: 189–191.

    Article  PubMed  CAS  Google Scholar 

  • Kuntzel, B., Weissenbach, J., and Dirheimer, G. 1974. Structure primaire des tRNAfirg de levure de bière. Biochimie. 56: 1069–1087.

    Article  PubMed  CAS  Google Scholar 

  • Blobstein, S. H., Grunberger D., Weinstein, I. B., and Nakanishi, K. 1973. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine tRNA. Biochemistry. 12: 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Dudock, B. S., and G. Katz. 1969. Large oligonucleotide sequences in wheat germ phenylalanine tRNA. J. Biol. Chem., 244: 3069–3074.

    PubMed  CAS  Google Scholar 

  • Dudock, B. S., Katz, G., Taylor, E. K., and Holley, R. W. 1969. Primary structure of wheat germ phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.

    Article  PubMed  CAS  Google Scholar 

  • Everett, G. A., and Madison, J. T. 1976. Nucleotide sequence of tRNAPhe from pea (Pisum sativum., Alaska). Biochemistry. 15: 1016–1021.

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C., Dirheimer, G., Grosjean, H., and Keith, G. 1975. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 60: 286–289.

    Article  CAS  Google Scholar 

  • Harbers, K., Thiebe, R., and Zachau, H. G. 1972. Preparation and characterization of fragments from yeast tRNAPhe. Eur. J. Biochem. 26: 132–143.

    Article  PubMed  CAS  Google Scholar 

  • Keith, G., Ebel, J. P., and Dirheimer, G. 1974. The primary structure of two mammalian tRNAsPhe: Identity of calf liver and rabbit liver tRNAsPhe. FEBS Lett. 48: 50–52.

    Article  PubMed  CAS  Google Scholar 

  • Keith, G., Picaud, F., Weissenbach, J., Ebel, J. P., Petrissant, G., and Dirheimer, G. 1973. The primary structure of rabbit liver tRNAPhe and its comparison with known tRNAPhe sequences. FEBS Lett. 31: 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three-dimensional structure of yeast phenylalanine tRNA: Folding of the polynucleotide chain. Science. 179: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H.,. Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974. Three-dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.

    CAS  Google Scholar 

  • Nakanishi, K., Furutachi, N., Funamizu, M., Grunberger, D., and Weinstein, I. B. 1970. Structure of the fluorescent Y base from yeast phenylalanine tRNA. J. Am. Chem. Soc. 92: 7617–7619.

    Article  PubMed  CAS  Google Scholar 

  • Philippsen, P., and Zachau, H. G. 1971. Fragments of yeast tRNAPhe and tRNASer prepared by partial digestion with spleen phosphodiesterase. FEBS Lett. 15: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Pongo, O., Bald, R., and Reinwald, E. 1973. On the structure of yeast tRNAPhe: Complementaryoligonucleotide binding studies. Eur. J. Biochem. 32: 117–125.

    Article  Google Scholar 

  • RajBhandary, U. L., Chang, S. H., Sneider, J., and Davis, D. 1968. Yeast phenylalanine tRNA: Partial digestion with ribonuclease T1, and derivation of the total primary structure. J. Biol. Chem. 243: 598–608.

    Google Scholar 

  • RajBhandary, U. L., Chang, S. H., Stuart, A., Faulkner, R. D., Hoskinson, R. M., and Khorana, H. G. 1967. The primary structure of yeast phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 57: 751–758.

    Article  Google Scholar 

  • Rosenfeld, A., Stevens, C. L., and Printz, M. P. 1970. Studies on the secondary structure of phenylalanyl tRNA. Biochemistry. 9: 4971–4980.

    Article  PubMed  CAS  Google Scholar 

  • Takemura, S., Kasai, H., and Goto, M. 1974. Nucleotide sequence of the anticodon region of Torulopsis. phenylalanine tRNA. J. Biochem. 75: 1169–1172.

    PubMed  CAS  Google Scholar 

  • Uziel, M., and Gassen, H. G. 1969. Structure of tRNAPke. Fed. Proc. 28: 409.

    Google Scholar 

  • Wong, Y. P., Kearns, D. R., Shulman, R. G., Yamane, T., Chang, S., Chirskyian, J. G., and Fresco, J. R. 1973. High resolution NMR study of base pairing in the native and denatured conformers of tRNA. J. Mol. Biol. 74: 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Altman, S., and Smith, J. D. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233: 35–39.

    PubMed  CAS  Google Scholar 

  • Doctor, B. P., Loebel, J. E., and Kellog, D. A. 1966. Studies on the species specificity of yeast and E. coli. tyrosine tRNA2. Cold Spring Harbor Symp. Quant. Biol. 31: 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Doctor, B. P., Loebel, J. E., Sodd, M. A. and Winter, D. B. 1969. Nucleotide sequence of E. coli. tyrosine tRNA. Science. 163: 693–695.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.

    CAS  Google Scholar 

  • Harada, F., Gross, H. J., Kimura, F., Chang, S. H., Nishimura, S., and RajBhandary, U. L. 1968. 2-methylthio N6-(12-isopentenyl) adenosine: A component of E. coli. tyrosine tRNA. Biochem. Biophys. Res. Comm. 33: 299–306.

    Google Scholar 

  • Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.

    CAS  Google Scholar 

  • Hachimoto, S., Takemura, S., and Miyazaki, M. 1972. Partial digestion with ribonuclease T, and derivation of the complete sequence of tRNATYr from Torulopsis utilis. J. Biochem. 72: 123–134.

    Google Scholar 

  • Madison, J. T., Everett, G. A., and Kung, H. 1966a. Nucleotide sequence of a yeast tyrosine tRNA. Science. 153: 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Madison, J. T. Everett, G. A., Kung, H. 1966b. On the nucleotide sequence of yeast tyrosine tRNA. Cold Spring Harbor Symp. Quant. Biol. 31: 409–416.

    Article  CAS  Google Scholar 

  • Madison, J. T., Everett, G. A., Kung, H. 1967. Oligonucleotides from yeast tyrosine tRNA. J. Biol. Chem. 242: 1318–1323.

    PubMed  CAS  Google Scholar 

  • Madison, J. T., and Kung, 11.-K. 1967. Large oligonucleotides isolated from yeast tyrosine tRNA after partial digestion with ribonuclease T1. Science. 242: 1324–1330.

    CAS  Google Scholar 

  • Seno, T., and Nishimura, S. 1971. Cleavage of E. coli. tyrosine tRNA2 in S-region and its effects on the structure and function of the reconstituted molecules. Biochim. Biophys. Acta. 228: 141–152.

    PubMed  CAS  Google Scholar 

  • Takemura, S., Hashimoto, S., and Miyazaki, M. 1972. Complete digestion of tyrosine tRNA from Torulopsis utilis. with pancreatic and T1 ribonucleases. J. Biochem. 72: 111–121.

    PubMed  CAS  Google Scholar 

  • Ginsberg, T., Rogg, H., and Staehelin, M. 1971. Nucleotide sequences of rat liver serine-tRNA. Eur. J. Biochem. 21: 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Hentzen, D., and Garet, J. P. 1976. Anticodon loop sequences of tRNAccA and tRNA cA from the posterior silkgland of Bombyx mori. L. Biochem. Biophys. Res. Comm. 71: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Ishikura, H., Yamada, Y., and Nishimura, S. 1971a. The nucleotide sequence of a serine tRNA from E. coli. FEBS Lett. 16: 68–70.

    Article  CAS  Google Scholar 

  • Ishikura, H., Yamada, Y., and Nishimura, S. 1971b. Structure of serine tRNA from E. coli. Biochim. Biophys. Acta. 228: 471–481.

    CAS  Google Scholar 

  • McClain, W. H., Barrell, B. G., and Seidman, J. G. 1975. Nucleotide alterations in bacteriophage T4 serine tRNA that affect the conversion of precursor RNA into tRNA. J. Mol. Biol. 99: 717–732.

    Article  PubMed  CAS  Google Scholar 

  • Rogg, H., and Staehelin, M. 1971a. Nucleotide sequences of rat liver serine-tRNA. 1. Products of digestion with pancreatic ribonuclease. Eur. J. Biochem. 21: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Rogg, H., and Staehelin, M. 1971b. Nucleotide sequence of rat liver serine-tRNA. 2. The products of digestion with ribonuclease T1. Eur. J. Biochem. 21: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, M. 1971. The primary structure of tRNA. Experientia., 27: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, M., Rogg, H., Baguley, B. C., Ginsberg, T., and Wehrli, W. 1968. Structure of a mammalian serine tRNA. Nature. 219: 1363–1365.

    Article  PubMed  CAS  Google Scholar 

  • Zachau, H. G., DĂĽtting, D., and Feldmann, H. 1966a. Nucleotidsequenzen zweier serinspezifischer Transfer-Ribonucleinsäuren. Angew. Chem., 78: 392–393.

    Article  Google Scholar 

  • Zachau, H. G., DĂĽtting, D., and Feldmann, H. 1966b. Serine specific tRNAs. Hoppe-Seyler’s Z. Phys. Chem. 347: 229–235.

    Google Scholar 

  • Hirsch, D. 1970. Tryptophan tRNA of E. coli. Nature. 228: 57.

    Google Scholar 

  • Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.

    Article  Google Scholar 

  • Keith, G., Roy, A., Ebel, J. P., and Dirheimer, G. 1971. The nucleotide sequences of two tryptophan-tRNAs from brewer’s yeast. FEBS Lett. 17: 306–308.

    Article  PubMed  CAS  Google Scholar 

  • Maugh, T. H. 1974. Rous sarcoma virus: A new role for tRNA. Science. 186: 41.

    Article  PubMed  Google Scholar 

  • Chang, S. H., Kuo, S., Hawkins, E., and Miller, N. R., 1973. The corrected nucleotide sequence of yeast leucine tRNA. Biochem. Biophys. Res. Comm. 51: 951–955.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S. H., and Miller, N. 1971. The nucleotide sequence of yeast leucine tRNA. Fed. Proc. 30: 1101.

    Google Scholar 

  • Kowalski, S., Yamane, T., and Fresco, J. R. 1971. Nucleotide sequence of the “denaturable” leucine tRNA from yeast. Science. 172: 385–387.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton, T. C., Paddock, G., and Abelson, J. 1972. Bacteriophage T4 tRNA Leu. Nature New Biol. 240: 88–90.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton, T. C., Paddock, G., and Abelson, J. 1973. Nucleotide sequence determination of bacteriophage T4 leucine tRNA. J. Biol. Chem. 248: 6348–6365.

    PubMed  CAS  Google Scholar 

  • Holness, N.J., and Atfield, G. 1974. Nucleotide sequence of tRNAcys from baker’s yeast. FEBS Lett. 46: 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Holness, N. J., and Atfield, G. 1976a. The extraction and purification of a cysteine tRNA from baker’s yeast. Biochem. J. 153: 429–435.

    PubMed  CAS  Google Scholar 

  • Holness, N. J., and Atfield, G. 1976b. The nucleotide sequence of cysteine tRNA from baker’s yeast. Biochem. J. 153: 447–454.

    PubMed  CAS  Google Scholar 

  • Abraham, D. J. 1971. Proposed detailed structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Allende, J. E., and Allende, C. C. 1971. Detection ?nd isolation of complexes between aminoacyltRNA synthetases and their substrates. Meth. Enzym. 20: 210–220.

    Article  Google Scholar 

  • Bhargava, P. M. 1971. Aminoacyl-tRNA synthetase recognition code-words in yeast tRNAs-a proposal. J. Theor. Biol. 29: 447–469.

    Article  Google Scholar 

  • Bina-Stein, M., and Crothers, D. M. 1974. Conformational changes of tRNA. Biochemistry. 13: 2771–2775.

    Article  PubMed  CAS  Google Scholar 

  • Blanquet, S., Fayat, G., Poiret, M., and Waller, J. P. 1975. The mechanism of action of methionyl-RNA synthetase from E. coli. Eur. J. Biochem. 51: 567–571.

    CAS  Google Scholar 

  • Bolton, P. H., and Kearns, D. R. 1975. NMR evidence for common tertiary structure base pairs in yeast and E. coli. tRNA. Nature. 255: 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Briand, J. P., Jonard, G., Guilley, H., Richards, K., and Hirth, L. 1977. Nucleotide sequence (n = 159) of the amino-acid-accepting 3’-OH extremity of TYMV RNA. Eur. J. Biochem., 72: 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Briand, J. P., Richards, K. E., Bouley, J. P., Witz, J., and Hirth, L. 1976. Structure of the amino-acid accepting 3’-end of high-molecular-weight eggplant mosaic virus RNA. Proc. Nat. Acad. Sci. USA. 73: 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Budzik, G. P., Lam, S. S. M., Schoemaker, H. J. P., and Schimmel, P. R. 1975. Two photo cross-linked complexes of isoleucine specific tRNA with aminoacyl tRNA synthetases. J. Biol. Chem. 250: 4433–4439.

    PubMed  CAS  Google Scholar 

  • Carbon, J., and Curry, J. B. 1968. Genetically and chemically derived missense suppressor tRNAs with altered enzymatic aminoacylation rates. J. Mol. Biol. 38: 201–216.

    Article  PubMed  CAS  Google Scholar 

  • Carbon, J., and Fleck, E. W. 1974. Genetic alteration of structure and function in glycine tRNA of E. coli: Mechanism of suppression of the tryptophan synthetase A78 mutation. J. Mol. Biol. 85: 371–391.

    Article  PubMed  CAS  Google Scholar 

  • Caron, M., Brisson, N., and Dugas. H. 1976. Evidence for a conformational change in tRNAPhe upon aminoacylation. J. Biol. Chem. 251: 1529–1530.

    PubMed  CAS  Google Scholar 

  • Cedergren, R. J., Cordeau, J. R., and Robillard, P. 1972. On the phylogeny of tRNAs. J. Theor. Biol. 37: 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Celis, J. E., Hooper, M. L., and Smith, J. D. 1973. Amino acid acceptor stem of E. coli. suppressor tRNATYr is a site of synthetase recognition. Nature New Biol. 244: 261–264.

    PubMed  CAS  Google Scholar 

  • Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. Mol. Biol. 11: 489–525.

    Article  CAS  Google Scholar 

  • Chambers, R. W., Aoyagi, S., Furukawa, Y., Zawadzka, H., and Bhanot, O. S. 1973. Inactivation of valine acceptor activity by a CU missense change in the anticodon of yeast valine tRNA. J. Biol. Chem. 248: 5549–5551.

    PubMed  CAS  Google Scholar 

  • Chapeville, F., Lipmann, F., von Ehrenstein, G., Weisblum, B., Ray, W. J., and Benzes, S. 1962. On the role of soluble RNA in coding for amino acids. Proc. Nat. Acad. Sci. USA. 48: 1086–1092.

    Article  PubMed  CAS  Google Scholar 

  • Chapeville, F., and Rouget, P. 1972. Aminoacyl-tRNA synthetases. Frontiers Biol. 27: 5–32.

    CAS  Google Scholar 

  • Chatterjee, S. K. and Kaji, H. 1970. Conformational changes of tRNA on aminoacylation. Biochim. Biophys. Acta. 224: 88–98.

    PubMed  CAS  Google Scholar 

  • Chinali, G., Sprinzl, M., Parmeggioni, A., and Cramer, F. 1974. Participation in protein biosynthesis of tRNA bearing altered 3’-terminal ribosyl residues. Biochemistry. 13: 3001–3010.

    Article  PubMed  CAS  Google Scholar 

  • Cole, P. E., and Crothers, D. M. 1972. Conformational changes of tRNA. Biochemistry. 11: 4368–4374.

    Article  PubMed  CAS  Google Scholar 

  • Cole, P. E., Yang, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Equilibrium phase diagrams. Biochemistry. 11: 4358–4368.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, F. 1971. Three-dimensional structure of tRNA. Progr. Nucl. Acid Res. Mol. Biol. 11: 391–421.

    Article  CAS  Google Scholar 

  • Dayhoff, M. O., and McLaughlin, P. J. 1972. Early evolution: Transfer RNA. In: Dayhoff, M. O., ed., Atlas of Protein Sequence and Structure. Vol. 5. National Biomedical Research Foundation, Washington, D.C., p. 111–118.

    Google Scholar 

  • Delaney, P., Bierbaum, J., and Ofengand, J. 1974. Conformational changes in thiouridine region of E. coli. tRNA as assessed by photochemically induced cross-linking. Arch. Biochem. Biophys. 161: 260–267.

    Article  CAS  Google Scholar 

  • Dube, S. K. 1973. Evidence for “three-point” attachment of tRNA to methionyl tRNA synthetase. Nature New Biol. 243: 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Eisinger, J., and Gross, N. 1975. Conformers, dimers, and anticodon complexes of tRNAr (E. coli). Biochemistry. 14: 4031–4040.

    Article  CAS  Google Scholar 

  • Elder, K. T., and Smith, A. E. 1973. Methionine tRNA of avian myeloblastosis virus. Proc. Nat. Acad. Sci. USA. 70: 2823–2826.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J. A., and Nazario, M. 1974. Neurospora. arginyl tRNA ligase binding and dissoaciation of tRNA. Biochemistry. 13: 3092–3098.

    CAS  Google Scholar 

  • Fasiolo, F., Befort, N., Boulanger, Y., and Ebel, J. P. 1970. Purification et quelques propriĂ©tĂ©s de la phĂ©nylalanyl-tRNA synthĂ©tase de levure de boulangerie. Biochim. Biophys. Acta. 217: 305–318.

    PubMed  CAS  Google Scholar 

  • Fasiolo, F., and Ebel, J. P. 1974. Yeast phenylalanyl tRNA synthetase. Eur. J. Biochem. 49: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Fasiolo, F., Renny, P., Pouyet, J., and Ebel, J. P. 1974. Yeast phenylanlanyl-tRNA synthetase. Eur. J. Biochem. 50: 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Gamble, R. C., and Schimmel, P. R. 1974. Transfer RNA conformation in solution investigated by isotope labeling. Proc. Nat. Acad. Sci. USA. 71: 1356–1360.

    Article  PubMed  CAS  Google Scholar 

  • Gangloff, J., Dirheimer, G., and Gangloff, M. L. 1973. Studies on aspartyl-tRNA synthetase from baker’s yeast. Biochim. Biophys. Acta. 294: 263–272.

    CAS  Google Scholar 

  • Glick, J. M., and Leboy, P. S. 1977. Purification and properties of tRNA (adenine-1)-methyltransferase from rat liver. J. Biol. Chem. 252: 4790–4795.

    PubMed  CAS  Google Scholar 

  • Gros, C., Lemaire, G., Rapenbusch, R. V., and Labouesse, B. 1972. The subunit structure of tryptophanyl tRNA synthetase from beef pancreas. J. Biol. Chem. 247: 2931–2943.

    PubMed  CAS  Google Scholar 

  • Gross, H. J. 1973. Transfer RNA: Evidence for decreasing size variation during evolution. J. Mol. Evol. 2: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Guilley, H., Jonard, G., and Hirth, L. 1975. Sequence of 71 nucleotides at the 3’-end of tobacco. mosaic virus RNA. Proc. Nat. Acad. Sci. USA. 72: 864–868.

    Article  PubMed  CAS  Google Scholar 

  • Haines, J. A., and Zamecnik, P. C. 1967. Chemical modification of aminoacyl ligases and the effect on formation of aminoacyl-tRNAs. Biochim. Biophys. Acta. 146: 227–238.

    PubMed  CAS  Google Scholar 

  • Hanke, T., Bartmann, P., Hennecke, H., Kosakowski, H. M., Jaenicke, R., Holler, E., and Boeck, A. 1974. L-phenylalanyl-tRNA synthetase of E. coli. K-10; A reinvestigation of molecular weight and subunit structure. Eur. J. Biochem. 43: 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Harpold, M. A., and Calvin, M. 1973. A simple model of the amino acid acceptor terminus of a tRNA. Biochim. Biophys. Acta. 308: 117–128.

    PubMed  CAS  Google Scholar 

  • Hashimoto, S., Kawata, M., and Takemura, S. 1972a. Reconstitution of an active acceptor com- plex which lacks the anticodon of Torulopsis. tyrosine tRNA. J. Biochem. 72: 1339–1349.

    PubMed  CAS  Google Scholar 

  • Hashimoto, S., Takemura, S., and Miyazaki, M. 1972b. Partial digestion with ribonuclease Ti and derivation of the complete sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 72: 123–134.

    CAS  Google Scholar 

  • Hashimoto, S., Takemura, S., Yabuki, S., Konishi, K., and Samejima, T. 1972c. Physicochemical studies on conformation of a complex reconstituted from half molecules of Torulopsis utilis. tyrosine tRNA. J. Biochem. 72: 1185–1195.

    PubMed  CAS  Google Scholar 

  • Hecht, S. M., Kozarich, J. W., and Schmidt, F. J. 1974. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. Proc. Nat. Acad. Sci. USA. 71: 4317–4321.

    Article  PubMed  CAS  Google Scholar 

  • Heider, H., Gottschalk, E., and Cramer, F. 1971. Isolation and characterization of seryl-tRNA synthetase from yeast. Eur. J. Biochem. 20: 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Hennecke, H., and Böck, A. 1975. Altered a subunits in phenylalanyl-tRNA synthetases from p.fluorophenylalanine-resistant strains of E. coli. Eur. J. Biochem. 55: 431–437.

    CAS  Google Scholar 

  • Hirshfield, I. N., and Bloemers, H. P. J. 1969. The biochemical characterization of two mutant arginyl tRNA synthetases from E. coli. K-12. J. Biol. Chem. 244: 2911–2916.

    PubMed  CAS  Google Scholar 

  • Holler, E., Hammer-Rober, B., Hanke, T., and Bartmann, P. 1975. The catalytic mechanism of amino acid: tRNA ligases. Biochemistry. 14: 2496–2503.

    Article  PubMed  CAS  Google Scholar 

  • Holmquist, R., and Jukes, T. H. 1973. No evidence for a common evolutionary origin of 5 S rRNA and tRNA. Nature New Biol. 245: 127.

    Article  PubMed  CAS  Google Scholar 

  • Isham, K. R., and Stulberg, M. P. 1974. Modified nucleosides in under-methylated phenylalanine tRNA from E. coli. Biochim. Biophys. Acta. 340: 177–182.

    CAS  Google Scholar 

  • Jones, C. R., and Kearns, D. R. 1974. Investigations of the structure of yeast tRNAPhe by nuclear magnetic resonance: Paramagnetic rare earth ion probes of structure. Proc. Nat. Acad. Sci. USA. 71: 4237–4240.

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T. H., and Holmquist, R. 1972. Evolution of tRNA molecules as a repetitive process. Biochem. Biophys. Res. Comm. 49: 212–216.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H. 1975. Symmetry recogniton hypothesis model for tRNA binding to aminoacyl tRNA synthetase. Nature. 256: 679–681.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three dimensional structure of yeast phenylalanine tRNA; folding of the polynucleotide chain. Science. 179: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974a. Three dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Sussman, J. L., Suddath, F. L., Quigley, G. J., McPherson, A., Wang, A. H., Seeman, N. C., and Rich, A. 1974b. The general structure of tRNA molecules. Proc. Nat. Acad. Sci. USA. 71: 4970–4974.

    Article  PubMed  CAS  Google Scholar 

  • Kiselev, L. L., and Favorova, O. O. 1974. Aminoacyl-tRNA synthetases: Some recent results and achievements. Adv. Enzymol. 40: 141–238.

    CAS  Google Scholar 

  • Koch, G. L. E., Boulanger, Y., and Hartley, B. S. 1974. Repeating sequences in aminoacyl-tRNA synthetases. Nature. 249: 316–320.

    Article  PubMed  CAS  Google Scholar 

  • Lamy, D., Jonard, G., Guilley, H., and Hirth, L. 1975. Comparison between the 3’OH end RNA

    Google Scholar 

  • sequence of two strains of TMV which may be aminoacylated. FEBS Lett. 60:202–204.

    Google Scholar 

  • Lapointe, J., and Söll, D. 1972a. Glutamyl tRNA synthetase of E. coli. I. Purification and properties. J. Biol. Chem. 247: 4966–4974.

    PubMed  CAS  Google Scholar 

  • Lapointe, J., and Söll, D. 1972b. Glutamyl tRNA synthetase of E. coli. II. Interaction with intact glutamyl tRNA. J. Biol. Chem. 247: 4975–4981.

    PubMed  CAS  Google Scholar 

  • Lawrence, F. 1973. Effect of adenosine on methionyl-tRNA synthetase. Eur. J. Biochem. 40: 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, F., Blanquet, S., Poiret, M., Robert-Gero, M., and Waller, J. P. 1973. Ion requirements and kinetic parameter of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes. Eur. J. Biochem. 36: 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, F., Shire, D. J., and Waller, J. P., 1974. The effect of adenosine analogues on the ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Eur. J. Biochem. 41: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, G., Gros, C., Epely, S., Kaminski, M., and Labouesse, B. 1975. Multiple forms of tryptophanyl-tRNA synthetase from beef pancreas. Eur. J. Biochem. 51: 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Lengyel, P., and Söll, D. 1969. Mechanism of protein biosynthesis. Bacteriol. Rev. 33: 264–301.

    PubMed  CAS  Google Scholar 

  • Levitt, M. 1969. Detailed molecular model for tRNA. Nature. 224: 759–763.

    Article  PubMed  CAS  Google Scholar 

  • Maelicke, A., Sprinzl, M., van der Haar, F., Khwaja, T. A., and Cramer, F. 1974. Structural studies on phenylalanine tRNA from yeast with the spectroscopic label formycin. Eur. J. Biochem. 43: 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absence of ribothymidine in specific eukaryotic tRNAs I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Marcu, K., et al. 1974. Personal communication.

    Google Scholar 

  • Mehler, A. H., and Mitra, S. K. 1967. The activation of arginyl tRNA synthetase by tRNA. J. Biol. Chem. 242: 5495–5499.

    PubMed  CAS  Google Scholar 

  • Muench, K. H., Lipscomb, M. S., Lee, M., and Kuehl, G. V. 1975. Homologous cysteine-containing sequences in tryptophanyl-tRNA synthetases from E. coli. and human placentas. Science. 187: 1089–1091.

    Article  PubMed  CAS  Google Scholar 

  • Mullins, D. W., Lacey, J. C., and Hearn, R. A. 1973a. 5 S rRNA and tRNA-evidence for a common evolutionary origin. Nature New Biol. 242: 80–81.

    Google Scholar 

  • Mullins, D. W., Lacey, J. C., and Hearn, R. A. 1973b. Reply. Nature New Biol. 245: 127–128.

    Article  Google Scholar 

  • Murayama, A., Raffin, J. P., Remy, P., and Ebel, J. P. 1975a. Yeast phenylalanyl-tRNA synthetase: Properties of the sulfhydryl groups; evidence for -SH requirements in tRNA acylation. FEBS Lett. 53: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, A., Raffin, J. P., Remy, P., and Ebel, J. P. 1975b. Yeast phenylalanyl-tRNA synthetase; isolation of subunits on organomercurial-sepharose columns. FEBS Lett. 53: 23–25.

    Article  PubMed  CAS  Google Scholar 

  • Nazario, M., and Evans, J. A. 1974. Physical and kinetic studies of arginyl tRNA ligase of Neurospora. J. Biol. Chem. 249: 4934–4942.

    CAS  Google Scholar 

  • Novelli, G. D. 1967. Amino acid activation for protein synthesis. Ann. Rev. Biochem. 36: 449–484.

    Article  PubMed  CAS  Google Scholar 

  • C.Aberg, B., and Philipson, L. 1972. Binding of histidine to TMV RNA. Biochem. Biophys. Res. Comm. 48: 927–932.

    Article  Google Scholar 

  • Odom, O. W., Hardesty, B., Wintermeyer, W., and Zachau, H. G. 1974. The effect of removal or replacement with proflavine of the Y base in the anticodon loop of yeast tRNAphe on binding into the acceptor or donor sites of reticulocyte ribosomes. Arch. Biochem. Biophys. 162: 536–551.

    Article  PubMed  CAS  Google Scholar 

  • Ofengand, J., Chlâdek, S., Robilard, G., and Bierbaum, J. 1974. Enzymatic acylation of oxydized reduced tRNA by E. coli., yeast, and rat liver synthetases occurs almost exclusively at the 2’ hydroxyl. Biochemistry. 13: 5425–5432.

    Article  PubMed  CAS  Google Scholar 

  • Ofengand, J., and Henes, C. 1969. The function of pseudouridylic acid in tRNA. J. Biol. Chem. 244: 6241–6253.

    PubMed  CAS  Google Scholar 

  • Papas, T. S., and Peterkofsky, A. 1972. A random sequential mechanism for arginyl tRNA synthetase of E. coli. Biochemistry. 11: 4602–4608.

    CAS  Google Scholar 

  • Parfait, R., and Grosjean, H. 1972. Arginyl-tRNA synthetase from Bacillus stearothermophilus. Eur. J. Biochem. 30: 242–249.

    Article  CAS  Google Scholar 

  • Penneys, N. S., and Muench, K. H. 1974. Human placental tryptophanyl tRNA synthetase. Biochemistry. 3: 560–565.

    Article  Google Scholar 

  • Petrissant, G. 1973. Evidence for the absence of the G-T-1,1,-C sequence from two mammalian initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.

    Article  PubMed  CAS  Google Scholar 

  • Ravel, J. M., Wang, S. F., Heinemeyer, C., and Shive, W. 1965. Glutamyl and glutaminyl RNA synthetases of E. coli. J. Biol. Chem. 240: 432–438.

    CAS  Google Scholar 

  • Reid, B. R., Einarson, B., and Schmidt, J. 1972. Loop accessibility in tRNA. Biochimie. 54: 325–332.

    Article  CAS  Google Scholar 

  • Riesner, D., Maass, G., Thiebe, R., Philippsen, P., and Zachau, H. G. 1973. The conformational transitions in yeast tRNAPhe as studied with tRNAPhe fragments. Eur. J. Biochem. 36: 76–88.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. W., and Carbon, J. 1974. Molecular mechanism for missense suppression in E. coli. Nature. 250: 412–414.

    CAS  Google Scholar 

  • Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting tRNA from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.

    PubMed  CAS  Google Scholar 

  • Roe, B., Michael, M., and Dudock, B. 1973. Function of NZ-methylguanine in phenylalanine tRNA. Nature New Biol. 246: 135–138.

    PubMed  CAS  Google Scholar 

  • Rymo, L., Lundvik, L., and Lagerkvist, U. 1972. Subunit structure and binding properties of three amino acid tRNA ligases. J. Biol. Chem. 247: 3888–3899.

    PubMed  CAS  Google Scholar 

  • Santi, D. V., Danenberg, P. V., and Satterly, P. 1971. Phenylalanyl tRNA synthetase from E.

    Google Scholar 

  • coli. Reaction parameters and order of substrate addition. Biochemistry. 10:4804–4812.

    Google Scholar 

  • Schmidt, J., Wang, R., Stanfield, S., and Reid, B. R. 1971. Yeast phenylalanyl tRNA synthetase. Biochemistry. 10: 3264–3268.

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker, H. J. P., Budzik, G. P., GiegĂ©, R., and Schimmel, P. R. 1975. Three photocrosslinked complexes of yeast phenylalanine specific tRNA with aminoacyl tRNA synthetases. J. Biol. Chem. 250: 4440–4444.

    PubMed  CAS  Google Scholar 

  • Schoemaker, H. J. P., and Schimmel, P. R. 1974. Photo-induced joining of a tRNA with its cognate amino-acid-tRNA synthetase. J. Mol. Biol. 84: 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Seno, T., Agris, P. F., and Söll, D. 1974. Involvement of the anticodon region of E. coli. tRNA°n and tRNA°u in the specific interaction with cognate aminoacyl-tRNA synthetase. Biochim. Biophys. Acta. 349: 328–338.

    PubMed  CAS  Google Scholar 

  • Shulman, R. G., Hilbers, C. W., Kearns, D. R., Reid, B. R., and Wong, Y. P. 1973. Ring-current shifts in the 300 MHz NMR spectra of six purified tRNA molecules. J. Mol. Biol. 78: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Simsek, M., Petrissant, G., and RajBhandary, U. L. I973a. Replacement of the sequence G-T-grC-G(A)- by G-A-U-C-G in initiator tRNA of rabbit liver cytoplasm. Proc. Nat. Acad. Sci. USA. 70: 2600–2604.

    Google Scholar 

  • Simsek, M., Ziegenmeyer, J., Heckman, J., and RajBhandary, U. L. 1973b. Absence of the sequence G-T-q,-C-G(A)- in several eukaryotic cytoplasmic initiator rRNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.

    Article  PubMed  CAS  Google Scholar 

  • Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 72–74.

    PubMed  CAS  Google Scholar 

  • Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.

    PubMed  CAS  Google Scholar 

  • Singhal, R. P. 1974. Chemical probe of structure and function of tRNAs. Biochemistry. 13: 2924–2932.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., and Cramer, F. 1973. Accepting site for aminoacylation of tRNAPhe from yeast. Nature New Biol. 245: 3–5.

    PubMed  CAS  Google Scholar 

  • Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.

    PubMed  CAS  Google Scholar 

  • Steinberg, W. 1974. Temperature-induced depression of tryptophan biosynthesis in a tryptophanyltRNA synthetase mutant of B. subtilis. J. Bact. 117: 1023–1034.

    CAS  Google Scholar 

  • Suddath, F. L., Quigley, G. J., McPherson, A., Sneden, D., Kim, J. J., Kim, S. H., and Rich, A. 1974. Three dimensional structure of yeast phenylalanine tRNA at 3.0 resolution. Nature. 248: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Taglang, R., Waller, J. P., Befort, N., and Fasiolo, F. 1970. Amino-acylation du tRNAva’ de E. coli. par la phĂ©nylalanyl-tRNA synthĂ©tase de levure. Eur. J. Biochem. 12: 550–557.

    Article  PubMed  CAS  Google Scholar 

  • Tal, J., Deutscher, M. P., and Littauer, U. Z. 1972. Biological activity of E. coli. tRNAPhe modified in its C-C-A terminus. Eur. J. Biochem. 28: 478–491.

    Article  PubMed  CAS  Google Scholar 

  • Thiebe, R. 1975. Aminoacylation of tRNA. Magnesium requirement and spermidine effect. FEBS Lett. 51: 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Thiebe, R., and Zachau, H. G. 1968. A special modification next to the anticodon of phenylalanine tRNA. Eur. J. Biochem. 5: 546–555.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. J., Chen, M. C., and Hartman, K. A. 1973. Raman studies of nucleic acids. X. Conformational structure of E. coli. tRNAs in aqueous solution. Biochim. Biophys. Acta. 324: 37–49.

    PubMed  CAS  Google Scholar 

  • von Ehrenstein, G., Weisblum, B., and Benzer, S. 1963. The function of sRNA as amino acid adaptor in the synthesis of hemoglobin. Proc. Nat. Acad. Sci. USA. 49: 669–675.

    Article  PubMed  CAS  Google Scholar 

  • White, B. N., and Tener, G. M. 1973. Properties of tRNAPhe from Drosophila. Biochim. Biophys. Acta. 312: 267–275.

    CAS  Google Scholar 

  • Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys: Res. Comm. 60: 1215–1221.

    Article  CAS  Google Scholar 

  • Wolfenden, R., Rammler, D. H., and Lipmann, F. 1964. On the site of esterification of amino acids to soluble RNA. Biochemistry. 3: 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Wong, Y. P., Reid, B. R., and Kearns, D. R. 1973. Conformation of charged and uncharged tRNAs. Proc. Nat. Acad. Sci. USA. 70: 2193–2195.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. H., and Söll, D. 1974. Studies of tRNA tertiary structure by singlet-singlet energy transfer. Proc. Nat. Acad. Sci. USA. 71: 2838–2842.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Comparison of the early melting transition of two tyrosine-specific tRNAs. Biochemistry. 11: 4375–4381.

    Article  PubMed  CAS  Google Scholar 

  • Yem, D. W., and Williams, L. S. 1973. Evidence for the existence of two arginyl-tRNA synthetase activities in E. coli. J. Bact. 113: 891–894.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1978). Reactive Sites and the Evolution of Transfer RNAs. In: The Genetic Mechanism and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2436-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2436-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2438-6

  • Online ISBN: 978-1-4684-2436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics