Skip to main content
  • 98 Accesses

Abstract

If not among all the universal components of organisms, then among the nucleic acids at least, the transfer RNAs are unique in having both a relatively constant molecular size and configuration. These consistencies are even more noteworthy because the class of substances (amino acids) they transport is totally lacking in both traits. Thus contrary to what might be expected from physicochemical considerations, no molecular relationships are in evidence between the carrier and transported compounds, a point that merits serious attention as the discussion proceeds. This chapter principally compares the characteristics of the base sequences of over 95 different species of tRNA. These results are then analyzed from an evolutionary standpoint in Chapter 8 in order to seek evidence relevant to the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden, C. J., and Arnott, S. 1973. Nucleotide conformations in codon-anticodon interactions. Biochem. Biophys. Res. Comm. 53: 806–811.

    PubMed  CAS  Google Scholar 

  • Armstrong, D. J., Burrows, W. J., Skoog, F., Roy, K. L., and Söll, D. 1969a. Cytokinins: Distribution in tRNA species of E. coli. Proc. Nat. Acad. Sci. USA. 63: 834–841.

    CAS  Google Scholar 

  • Armstrong, D. J., Skoog, F., Kirkegard, L. H., Hampel, A. E., Bock, R. M., Gillam, I., and Tener, G. M. 1969b. Cytokinins: Distribution in species of yeast tRNA. Proc. Nat. Acad. Sci. USA. 63: 504–511.

    PubMed  CAS  Google Scholar 

  • Arnold, H., and Kersten, H. 1973. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli. and B. subtilis. FEBS Lett. 36: 34–38.

    CAS  Google Scholar 

  • Arnold, H., Schmidt, W., and Kersten, H. 1975. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis. FEBS Lett. 52: 62–65.

    CAS  Google Scholar 

  • Atkins, J. F., and Ryce, S. 1974. UGA and non-triplet suppressor reading of the genetic code. Nature. 249: 527–530.

    PubMed  CAS  Google Scholar 

  • Baczynskyj, L., Biemann, K., and Hall, R. H. 1968. Sulfur-containing nucleoside from yeast tRNA: 2-thio-5 (or 6)-uridine acetic acid methyl ester. Science. 159: 1481–1483.

    PubMed  CAS  Google Scholar 

  • Bartz, J., Söll, D., Burrows, W. J., and Skoog, F. 1970. Identification of the cytokinin-active ribonucleosides in pure E. coli. tRNA species. Proc. Nat. Acad. Sci. USA. 67: 1448–1453.

    PubMed  CAS  Google Scholar 

  • Bhargava, P. M., Pallaiah, T., and Premkumar, E. 1970. Aminoacyl-tRNA synthetase recognition code-words in yeast tRNAs: A proposal. J. Theor. Biol. 29: 447–469.

    PubMed  CAS  Google Scholar 

  • Blobstein, S. H., Gebert, R., Grunberger, D., Nakanishi, K., and Weinstein, I. B. 1975. Structure of the fluorescent nucleoside of yeast tRNAPhe. Arch. Biochem. Biophys. 167: 668–673.

    PubMed  CAS  Google Scholar 

  • Carbon, J., Squires, C., and Hill, C. W. 1970. Glycine tRNA of E. coli. II. Improved GGA-recognition in strains containing a genetically altered tRNA; Reversal by a secondary suppressor mutation. J. Mol. Biol. 52: 571–584.

    PubMed  CAS  Google Scholar 

  • Caskey, C. T., Beaudet, A., and Nirenberg, M. 1968. Codons and protein synthesis. 15. Dissimilar responses of mammalian and bacterial tRNA fractions to mRNA codons. J. Mol. Biol. 37: 99–118.

    PubMed  CAS  Google Scholar 

  • Cedergren, R. J., Cordeau, J. R., and Robillard, P. 1972. On the phylogeny of tRNAs. J. Theor. Biol. 37: 209–220.

    PubMed  CAS  Google Scholar 

  • Celis, J. E., Hooper, M. L., and Smith, J. D. 1973. Amino acid acceptor stem of E. coli. suppressor tRNATYr is a site of synthetase recognition. Nature New Biol. 244: 261–264.

    PubMed  CAS  Google Scholar 

  • Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. Mole. Biol. 11: 489–525.

    CAS  Google Scholar 

  • Chinali, G., Sprinzl, M., Parmeggiani, A., and Cramer, F. 1974. Participation in protein biosynthesis of tRNAs bearing altered 3’-terminal ribosyl residues. Biochemistry. 13: 3001–3010.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C. 1966. Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol. 19: 548–555.

    PubMed  CAS  Google Scholar 

  • Dayhoff, M. O., ed. 1969. Atlas of Protein Sequence and Structure. 1969., Vol. 4. Silver Spring, Md., Nat. Biomed. Res. Found.

    Google Scholar 

  • Dudock, B. S., Katz, G., Taylor, E. K., and Holley, W. 1969. Primary structure of wheat germ phenylalanine transfer RNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.

    PubMed  CAS  Google Scholar 

  • Dudock, B. S., DiPeri, C., and Michael, M. S. 1970. On the nature of the yeast phenylalanine transfer ribonucleic acid synthetase recognition site. J. Biol. Chem. 245: 2465–2468.

    PubMed  CAS  Google Scholar 

  • Dudock, B. S., DiPeri, C., Scileppi, K., and Reszelback, R. 1971. The yeast phenylalanyl-tRNA synthetase recognition site: The region adjacent to the dihydrouridine loop. Proc. Nat. Acad. Sci. USA. 68: 681–684.

    PubMed  CAS  Google Scholar 

  • Dugré, M., and Cedergren, R. J. 1974. Origine de l’inosine dans les tRNA de levure. Can. J. Biochem. 52: 417–422.

    PubMed  Google Scholar 

  • Eisinger, J., and Gross, N. 1974. The anticodon-anticodon complex. J. Mol. Biol. 88: 165–174.

    PubMed  CAS  Google Scholar 

  • Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raegmaekers, A., Van der Bergh, A., Volckaert, G., and Ysebaert, M. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature. 260: 500–507.

    PubMed  CAS  Google Scholar 

  • Geller, M., Pohorille, A. and Jaworski, A., 1973. Electronic structure of thiouracils and their interaction with adenine. Biochim. Biophys. Acta. 331: 1–8.

    PubMed  CAS  Google Scholar 

  • Genter, N., and Berg, P. 1971. Occurrence of a glycyl-lipopolysaccharide structure in E. coli. and its enzymatic formation from glycyl-tRNA. Fed. Proc. 30: 1218.

    Google Scholar 

  • Ghysen, A., and Celis, J. E. 1974. Mischarging single and double mutants of E. coli sup. 3 tyrosine tRNA. J. Mol. Biol. 83: 333–351.

    PubMed  CAS  Google Scholar 

  • Gillam, I., Millward, S., Blew, D., von Tigerstrom, M., Wimmer, E., and Tener, G. M. 1967. The separation of soluble RNAs on benzoylated dimethylaminoethylcellulose. Biochemistry. 6: 3043–3056.

    PubMed  CAS  Google Scholar 

  • Gould, R. M., Thornton, M. P., Liepkalns, V., and Lennarz, W. J. 1968. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. II. Specificity of alanyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3096–3104.

    PubMed  CAS  Google Scholar 

  • Griffin, G. D., Yang, W. K., and Novelli, G. D. 1976. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. Arch. Biochem. Biophys. 176: 187–196.

    PubMed  CAS  Google Scholar 

  • Hall, R. H. 1971. The Modified Nucleosides in Nucleic Acids., Columbia University Press, N.Y., p. 257–280.

    Google Scholar 

  • Hirsch, D. 1971, Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.

    Google Scholar 

  • Holmes, W. M., Hurd, R. E., Reid, B. R., Rimerman, R. A., and Hatfield, G. W. 1975. Separation of tRNA by sepharose chromatography using reverse salt gradients. Proc. Nat. Acad. Sci. USA. 72: 1068–1071.

    PubMed  CAS  Google Scholar 

  • Inokuchi, H., Celis, J. E., and Smith, J. D. 1974. Mutant tyrosine tRNAs of E. coli: Construction by recombination of a double mutant A1G82 chargeable with glutamine. J. Mol. Biol. 85: 187–192.

    PubMed  CAS  Google Scholar 

  • Isham, K. R., and Stulberg, M. P. 1974. Modified nucleosides in undermethylated phenylalanine tRNA from E. coli. Biochim. Biophys. Acta. 340: 177–182.

    CAS  Google Scholar 

  • Jacobson, B. K. 1971. Role of an isoacceptor tRNA as an enzyme inhibitor: Effect on tryptophan pyrrolase of Drosophila. Nature New Biol. 231: 17–19.

    CAS  Google Scholar 

  • Johnson, H., Hayashi, H., and Söll, D. 1970. Isolation and properties of a tRNA deficient in ribothymidine. Biochemistry. 9: 2823–2831.

    PubMed  CAS  Google Scholar 

  • Kaji, A., Kaji, H., and Novelli, G. D. 1965a. Soluble amino acid-incorporating system. I. Preparation of the system and nature of the reaction. J. Biol. Chem. 240: 1185–1191.

    PubMed  CAS  Google Scholar 

  • Kaji, A., Kaji, H., and Novelli, G. D. 1965b. Soluble amino acid-incorporating system. II. Soluble nature of the system and the characterization of the radioactive product. J. Biol. Chem. 240: 1192–1199.

    PubMed  CAS  Google Scholar 

  • Kaminek, M. 1974. Evolution of tRNA and the origin of two positional isomers of zeatin. J. Theor. Biol. 48: 489–492.

    PubMed  CAS  Google Scholar 

  • Körner, A., and Söll, D. 1974. N-(purin-6-yIcarbamoyl)threonne: Biosynthesis in vitro. in tRNA by an enzyme purified from E. coli. FEBS Lett. 39: 301–306.

    Google Scholar 

  • Kruppa, J., and Zachau, H. G. 1972. Multiplicity of serine-specific transfer RNAs of brewers’ and bakers’ yeast. Biochim. Biophys. Acta. 277: 499–512.

    PubMed  CAS  Google Scholar 

  • Leibowitz, M. J., and Soffer, R. L. 1969. A soluble enzyme from Escherichia coli. which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem. Biophys. Res. Comm. 36: 47–53.

    PubMed  CAS  Google Scholar 

  • Li, H. J., Nakanishi, K., Grunberger, D., and Weinstein, I. B., 1973. Biosynthetic studies of the Y base in yeast phenylalanine tRNA. Incorporation of guanosine. Biochem. Biophys. Res. Comm., 55: 818–823.

    PubMed  CAS  Google Scholar 

  • Lindahl, T., Adams. A., Geroch, M., and Fresco, J. R. 1967. Selective recognition of the native conformation of tRNAs by enzymes. Proc. Nat. Acad. Sci. USA. 57: 178–185.

    CAS  Google Scholar 

  • Liu, L. P., and Ortwerth, B. J. 1972. Specificity of rat liver lysine tRNA for codon recognition. Biochemistry. 11: 12–17.

    PubMed  CAS  Google Scholar 

  • Matsuhashi, M., Dietrich, C. P., and Strominger, J. L. 1967. Biosynthesis of the peptidoglycan of bacterial cell walls. III. The role of soluble ribonucleic acid and of lipid intermediates in glycine incorporation in Staphylococcus aureus. J. Biol. Chem. 242: 3191–3206.

    CAS  Google Scholar 

  • Maugh, T. H. 1974. Rous sarcoma virus: A new role for transfer RNA. Science. 186: 41.

    PubMed  Google Scholar 

  • Melera, P. W., Momeni, C., and Rusch, H. L. 1974. Analysis of isoaccepting tRNAs during the growth phase mitotic cycle of Physarum polycephalum. Biochemistry. 13: 4139–4142.

    CAS  Google Scholar 

  • Morikawa, K., Torii, K., Iitaka, Y., and Tsuboi, M. 1974. Crystal and molecular structure of the methyl ester of uridin-5-oxyacetic acid: A minor constituent of E. coli. tRNAs. FEBS Lett. 48: 279–282.

    PubMed  CAS  Google Scholar 

  • Munch, H. J., and Thiebe, R. 1975. Biosynthesis of the nucleoside Y in yeast tRNAphe: Incorporating of the 3-amino-3-carboxypropyl-group from methionine. FEBS Lett. 51: 257–258.

    PubMed  CAS  Google Scholar 

  • Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970a. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. valine tRNA. Biochem. Biophys. Res. Comm. 38: 657–662.

    PubMed  CAS  Google Scholar 

  • Neidhardt, F. C. 1966. Roles of amino acid activating enzymes in cellular physiology. Bacteriol. Rev. 30:701–7–19.

    Google Scholar 

  • Nesbitt, J. A., and Lennarz, W. J. 1968. Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3088–3095.

    PubMed  CAS  Google Scholar 

  • Nishimura, S. 1972. Minor components in tRNA: Their characterization, location, and function. Progr. Nucleic Acid Res. Mol. Biol. 12: 49–85.

    CAS  Google Scholar 

  • Nishimura, S., Taya, Y., Kuchino, Y., and Ohashi, Z. 1974. Enzymatic synthesis of 3-(3-amino3-carboxypropyl)uridine in E. coli. phenylalanine tRNA: Transfer of the 3-amino-3-carboxypropyl group from 5-adenosylmethionine. Biochem. Biophys. Res. Comm. 57: 702–708.

    PubMed  CAS  Google Scholar 

  • Nishimura, S., and Weinstein, I. B. 1969. Fractionation of rat liver tRNA. Isolating tyrosine, valine, serine, and phenylalanine tRNAs and their coding properties. Biochemistry. 8: 832–842.

    PubMed  CAS  Google Scholar 

  • Nishimura, S., Yamada, Y., and Ishikura. H. 1969. The presence of 2-methylthio-N(O2-isopentenyl)adenosine in serine and phenylalanine tRNAs from E. coli. Biochim. Biophys. Acta. 179: 517–520.

    CAS  Google Scholar 

  • Odom, O. W., Hardesty, B., Wintermeyer, W., and Zachau, H. G. 1974. The effect of removal or replacement with profiavin of the Y base in the anticodon loop of yeast tRNAphe on binding into the acceptor or donor sites of reticulocyte ribosomes. Arch. Biochem. Biophys. 162: 536–551.

    PubMed  CAS  Google Scholar 

  • Ofengand, J., and Henes, C. 1969. The function of pseudouridylic acid in tRNA. J. Biol. Chem. 244: 6241–6253.

    PubMed  CAS  Google Scholar 

  • Ohashi, Z., Maeda, M., McCloskey, J. A., and Nishimura, S. 1974. 3-(3-amino-3-carboxypropyl)uridine: A novel modified nucleoside isolated from E. coli. phyenylalanine tRNA. Biochemistry. 13: 2620–2625.

    Google Scholar 

  • Parthasarathy, R., Ohrt, J. M., and Chkeda, G. B. 1974a. Conformation of N-(purin-6-ylcarbamoyl)glycine, a hypermodified base in tRNA. Biochem. Biophys. Res. Comm. 57: 649–653.

    PubMed  CAS  Google Scholar 

  • Parthasarathy, R., Ohrt, J. M., and Chkeda, G. B. 1974b. Conformation and possible role of hypermodified nucleosides adjacent to 3’-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)L-threonine riboside. Biochem Biophys. Res. Comm. 60: 211–218.

    PubMed  CAS  Google Scholar 

  • Pearson, R. L., Hancher, C. W., Weiss, J. F., Holladay, D. W., and Keemers, A. D. 1973. Preparation of crude tRNA and chromatographic purification of five tRNAs from calf liver. Biochim. Biophys. Acta. 294: 236–249.

    CAS  Google Scholar 

  • Pearson, R. L., Weiss, J. F., and Kelmers, A. D. 1971. Improved separation of tRNAs on polychlorotrifluoroethylene-supported reversed-phase chromatography columns. Biochim. Biophys. Acta. 228: 770–774.

    PubMed  CAS  Google Scholar 

  • Peterkofsky, A., and Jesensky, C. 1969. The localization of N6(6,2-isopentenyl)-adenosine among the acceptor species of tRNA of Lactobacillus acidophilus. Biochemistry. 8: 3798–3807.

    CAS  Google Scholar 

  • Petit, J. F., Strominger, J. L., and Söll, D. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. II. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J. Biol. Chem. 243: 757–767.

    CAS  Google Scholar 

  • Petrissant, G. 1973. Evidence for the absence of G-TAI’-C sequence from two mammalian initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.

    PubMed  CAS  Google Scholar 

  • Powers, D. M., and Peterkofsky, A. 1972. Biosynthesis and specific labeling of N(purin-6-ylcarbamoyl)threonine of E. coli. tRNA. Biochem. Biophys. Res. Comm. 46: 831–838.

    PubMed  CAS  Google Scholar 

  • Randerath, E., Chia, L.-L. S. Y., Morris, H. P., and Randerath, K. 1974. Base analysis of RNA by 3H postlabelling-a study of ribothymidine content and degree of base methylation of 4 S RNA. Biochim. Biophys. Acta. 366: 159–167.

    PubMed  CAS  Google Scholar 

  • Rao, P. M.,and Kaji, H. 1974. Utilization of isoaccepting leucyl-tRNA in the soluble incorporation system and protein synthesizing systems from E. coli. FEBS Lett. 43: 199–202.

    CAS  Google Scholar 

  • Richter, D., Erdmann, V. A., and Sprinzl, M. 1973. Specific recognition of GT“I’C loop (loop IV) of tRNA by 50 S ribosomal subunits from E. coli. Nature New Biol. 246: 132–135.

    CAS  Google Scholar 

  • Roberts, W. S. L., Strominger, J. L., and Söll, D. 1968a. Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus. J. Biol. Chem. 243: 749–756.

    CAS  Google Scholar 

  • Roberts, W. S. L., Petit, J. F., and Strominger, J. L. 1968b. Biosynthesis of the peptidoglycan of bacteria. VIII. Specificity in the utilization of L-alanyl tRNA for interpeptide bridge synthesis in Arthrobacter crystailopoietes. J. Biol. Chem. 243: 768–772.

    CAS  Google Scholar 

  • Roe, B., and Dudock, B. 1972. The role of the fourth nucleotide from the 3’-end in the yeast phenylalanyl tRNA synthetase recognition site: Requirement for adenosine. Biochem. Biophys. Res. Comm. 49: 399–406.

    PubMed  CAS  Google Scholar 

  • Roth, J. R., and Ames, B. N. 1966. Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having layered histidyl-tRNA sythetase. J. Mol. Biol. 22: 325–334.

    PubMed  CAS  Google Scholar 

  • Saneyoshi, M., Ohashi, Z., Harada, F., and Nishimura, S. 1972. Isolation and characterization of 2-methyl-adenosine from E. coli. tRNA2’°, tRNAifi°, tRNAH’a and tRNAArg. Biochim: Biophys. Acta. 262: 1–10.

    CAS  Google Scholar 

  • Schlesinger, S., and Magasanik, B. 1964. Effect of a-methylhistidine on the control of histidine synthesis. J. Mol. Biol. 9: 670–682.

    PubMed  CAS  Google Scholar 

  • Schulman, LaD. H. 1972. Structure and function of E. coli. formylmethionine tRNA: Loss of methionine acceptor activity by modification of a specific guanosine residue in the acceptor stem of formylmethionine tRNA from E. coli. Proc: Nat. Acad. Sci. USA. 69: 3594–3597.

    CAS  Google Scholar 

  • Sekiya, T., Takeishi, K., and Ukita, T. 1969. Specificity of yeast glutamic acid tRNA for codon recognition. Biochim. Biophys. Acta. 182: 411–426.

    PubMed  CAS  Google Scholar 

  • Sen, G. C., and Ghosh. H. P., 1973. Coding properties of isoaccepting lysine tRNA species from baker’s yeast. Biochim. Biophys. Acta. 308: 106–116.

    PubMed  CAS  Google Scholar 

  • Silbert, D. F., Fink, G. R., and Ames, B. N. 1966. Histidine regulatory mutants in Salmonella typhimurium. III. A class of regulatory mutants deficient in tRNA for histidine. J. Mol. Biol. 22: 335–347.

    PubMed  CAS  Google Scholar 

  • Simsek, M., Ziegenmeyer, J., Heckman, J., and RajBhandary, U. L. 1973. Absence of the sequence GTY’CG(A)- in several eukaryotic cytoplasmic initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.

    PubMed  CAS  Google Scholar 

  • Smith, J. D., and Celis, J. E. 1973. Mutant tyrosine tRNA that can be charged with glutamine. Nature New Biol. 243: 66–71.

    PubMed  CAS  Google Scholar 

  • Söll, D. 1971. Enzymatic modification of tRNA. Science. 173: 293–299.

    PubMed  Google Scholar 

  • Söll, D., Cherayil, J., Jones, D. S., Faulkner, R. D., Hampel, A., Bock, R. M., and Khorana, H. C. 1966. sRNA specificity for codon recognition as studied by the ribosomal binding technique. Cold Spring Harbor Symp. Quant. Biol. 31: 51–62.

    Google Scholar 

  • Sprinzl, M., and Cramer, F. 1973. Accepting site for aminoacylation of tRNAPhe from yeast. Nature New Biol. 245: 3–5.

    PubMed  CAS  Google Scholar 

  • Taglang, R., Waller, J. P., Befort, N., and Fasciolo, F. 1970. Amino-acylation du tRNAia’ de E. coli. par la phénylalanyl-tRNA synthétase de levure. Eur. J. Biochem. 12: 550–557.

    PubMed  CAS  Google Scholar 

  • Tal, J., Deutscher, M. P., and Littauer, U. Z. 1972. Biological activity of E. coli. tRNAPhe modified in its -CCA terminus. Eur. J. Biochem. 28: 478–491.

    PubMed  CAS  Google Scholar 

  • Thiebe, R., and Poralla, K. 1973. Origin of the nucleoside Y in yeast tRNAPhe. FEBS Lett. 38: 27–28.

    PubMed  CAS  Google Scholar 

  • Wallace, R. B., and Freeman, K. B. 1974. Multiple species of raethionyl-tRNA from mouse liver mitochondria. Biochem. Biophys. Res. Comm. 60: 1440–1445.

    PubMed  CAS  Google Scholar 

  • White, B. N., and Tener, G. M. 1973. Properties of tRNAPhe from Drosophila. Biochim. Biophys. Acta. 312: 267–275.

    CAS  Google Scholar 

  • White, B. N., Dunn, R., Gillam, I., Tener, G. M., Armstrong, D. J., Skoog, F., Frihart, C. R., and Leonard, N. J. 1975. An analysis of five serine tRNAs from Drosophila. J. Biol. Chem. 250: 515–521.

    CAS  Google Scholar 

  • Wittig, B., Reuter, S., and Gottschling, H. 1973. Purification of the four lysine-specific tRNAs from chick embryos. Biochim. Biophys. Acta. 331: 221–230.

    PubMed  CAS  Google Scholar 

  • Woodward, W. R., and Herbert, E. 1972. Coding properties of reticulocyte lysine tRNAs in hemoglobin synthesis. Science. 177: 1197–1199.

    PubMed  CAS  Google Scholar 

  • Wu, M., Davidson, N., Attardi, G., and Aloni, Y. 1972. Expression of the mitochondrial genome in HeLa Cells. XIV. The relative positions of the 4 S RNA genes and of the rRNA genes in mitochondrial DNA. J. Mol. Biol. 71: 81–93.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., Nishimura, S., and Ishikura, H. 1971. The presence of 2-methylthio-Ns-(02-isopentenyl)adenosine in leucine, tryptophan, and cysteine tRNAs from E. coli. Biochiin. Biophys. Acta. 247: 170–174.

    CAS  Google Scholar 

  • Yang. W. K., Hellman, A., Martin, D. H., Hellman, K. B., and Novelli, G. D. 1969. Iso-accepting tRNAs of L-M cells in culture and after tumor induction in C3H mice. Proc. Nat. Acad. Sci. USA. 64: 1411–1418.

    Google Scholar 

  • Yang, W. K., and Novelli, G. D. 1971. Analysis of isoaccepting tRNAs in mammalian tissues and cells. Methods Enzymol. 20: 44–55.

    Google Scholar 

  • Barrell, B. G., Coulson, A. R., and McClain, W. H. 1973. Nucleotide sequence of a glycine tRNA coded by bacteriophage T4. FEBS Lett. 37: 64–69.

    PubMed  CAS  Google Scholar 

  • Hill, C. W., Combriato, G., Stemhart, W., Riddle, D. L., and Carbon, J. 1973. The nucleotide sequence of the GGG-specific glycine tRNA of E. coli. and Salmonella typhimurium. J. Biol. Chem. 248: 4252–4262.

    CAS  Google Scholar 

  • Hill, C. W., Squires, C., and Carbon, J. 1970. Structural genes for two glycine tRNA species. J. Mol. Biol. 52: 557–569.

    PubMed  CAS  Google Scholar 

  • Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absense of ribothymidine in specific tRNAs. I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.

    PubMed  CAS  Google Scholar 

  • Riddle, D. L., and Carbon, J. 1973. Frameshift suppression: A nucleotide addition in the anticodon of a glycine tRNA. Nature New Biol. 242: 230–234.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J. 1972: Structures of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–46.

    CAS  Google Scholar 

  • Roberts, R. J. 1974. Staphylococcal tRNAs. II. Sequence analysis of isoaccepting glycine tRNA IA and IB from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4787–4796.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting glycine tRNAs from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.

    PubMed  CAS  Google Scholar 

  • Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.

    PubMed  CAS  Google Scholar 

  • Stahl, S., Paddock, G., and Abelson, J. 1973. T4 bacteriophage tRNA°1. Biochem. Biophys. Res. Comm. 54: 567–569.

    PubMed  CAS  Google Scholar 

  • Stewart, T. S., Roberts, R. J., and Strominger, J. L. 1971. Novel species of RNA. Nature. 230: 36–38.

    PubMed  CAS  Google Scholar 

  • Yoshida, M. 1973. The nucleotide sequence of tRNAch from yeast. Biochem. Biophys. Res. Comm. 50: 779–784.

    PubMed  CAS  Google Scholar 

  • Zachau, H. G. 1969. Transfer ribonucleic acids. Angew. Chem. (Int. Ed.). 8: 711–727.

    CAS  Google Scholar 

  • Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswrick, J. R., and Zamir, A. 1965a. Structure of a ribonucleic acid. Science., 147: 1462–1465.

    PubMed  CAS  Google Scholar 

  • Holley, R. W., Everett, G. A., Madison, J. T., and Zamir, A. 1965b. Nucleotide sequences in the yeast alanine tRNA. J. Biol. Chem. 240: 2122–2127.

    PubMed  CAS  Google Scholar 

  • Merrill, C. R. 1968. Reinvestigation of the primary structure of yeast alanine tRNA. Biopolymers. 6: 1727–1735.

    Google Scholar 

  • Murao, K., Hasegawa, T., and Ishikura, H. 1976. 5-methoxyuridine: A new minor constituent located in the first position of the anticodon of tRNAma, tRNAThr, and tRNAval from B. subtilis. Nucl. Acids Res. 3:2851–2857.

    Google Scholar 

  • Penswick, J. R., Martin, R., and Dirheimer, G. 1975. Evidence supporting a revised sequence for yeast alanine tRNA. FEBS Lett. 50: 28–31.

    PubMed  CAS  Google Scholar 

  • Takemura, S., and Ogawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 323–333.

    CAS  Google Scholar 

  • Takemura, S., Ogawa, K., and Nakazawa, K. 1972. Nucleotide sequence of alanine tRNA, from Torulopsis utilis. FEBS Lett. 25: 29–32.

    CAS  Google Scholar 

  • Takemura, S., Ogawa, K., and Nakazawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 313–322.

    CAS  Google Scholar 

  • Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys. Res. Comm. 60: 1215–1221.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Kaziro, Y., and Ukita, T. 1968. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA. Biochim. Biophys. Acta. 166: 646–655.

    PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1971. Structure of asparate-tRNA from brewer’s yeast. Nature New Biol. 230: 125–126.

    PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972a. The primary structure of aspartate tRNA from brewer’s yeast. Complete digestion with pancreatic ribonuclease and T, ribonuclease. Biochim. Biophys. Acta. 259: 198–209.

    PubMed  CAS  Google Scholar 

  • Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972b. The primary structure of aspartate

    Google Scholar 

  • tRNA from brewer’s yeast. II. Partial digestions with pancreatic ribonuclease and T1 ribonuclease and derivation of complete sequence. Biochim. Biophys. Acta. 259: 210–222.

    Google Scholar 

  • Harada, F., and Nishimura, S. 1972. Possible anticodon sequences of tRNA’, tRNAAS“, and tRNAAaP from E. coli. B. Universal presence of nucleoside Q in the first position of the anticodon of these transfer ribonucleic acids. Biochemistry. 11: 301–308.

    PubMed  CAS  Google Scholar 

  • Harada, F., Yamaizumi, K., and Nishimura, S. 1972. Oligonucleotide sequences of RNase T1 and pancreatic RNase digests of E. coli. aspartic acid tRNA. Biochem. Biophys. Res. Comm. 49: 1605–1609.

    PubMed  CAS  Google Scholar 

  • Keith, G., Gangloff, J., Ebel, J. P., and Dirheimer, G. 1970. Etablissement de la séquence de nucléotides de l’aspartate-t-RNA de levure de bière. C. R. Acad. Sci. Paris., 271: 613–616.

    CAS  Google Scholar 

  • Kobayashi, T., Irie, T., Yoshida, M., Takeishi, K., and Ukita, T. 1974. The primary structure of yeast glutamic acid tRNA specific to the GAA codon. Biochim. Biophys. Acta. 366: 168–181.

    PubMed  CAS  Google Scholar 

  • Munninger, K. O., and Chang, S. H. 1972. A fluorescent nucleoside from glutamic acid tRNA of E. coli. K12. Biochem. Biophys. Res. Comm. 46: 1837–1842.

    PubMed  CAS  Google Scholar 

  • Ohashi, Z., Murao, K., Yahagi, T., von Minden, D. L., McCloskey, J. A., and Nishimura, S. 1972. Characterization of C+ located in the first position of the anticodon of E. coli. tRNAMet as N4-acetylcytidine. Biochim. Biophys. Acta. 262: 209–213.

    CAS  Google Scholar 

  • Ohashi, Z., Saneyoshi, M., Harada, F., Hara, H., and Nishimura, S. 1970. Presumed anticodon structure of glutamic acid tRNA from E. coli: A possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem. Biophys. Res. Comm. 40: 866–872.

    CAS  Google Scholar 

  • Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Takeishi K., and Ukita, T. 1970. Anticodon structure of GAA-specific glutamic acid tRNA from yeast. Biochem. Biophys. Res. Comm. 39: 852–857.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Takeishi, K., and Ukita, T. 1971. Structural studies on a yeast glutamic acid tRNA specific to GAA codon. Biochim. Biophys. Acta. 228: 153–166.

    PubMed  CAS  Google Scholar 

  • Bayev, A. A., Venkstern, T. V., Mirzabekov, A. D., Krutilina, A. I., Li, L., and Axelrod, V. D. 1967. Primary structure of the valine tRNA. Mol. Biol. 1: 754–758.

    Google Scholar 

  • Bonnet, J., Ebel, J. P., and Dirheimer, G. 1971. Primary structure of tRNA)a’, from brewer’s yeast. FEBS Lett. 15: 286–290.

    PubMed  CAS  Google Scholar 

  • Bonnet, J., Ebel, J. P., Dirheimer, G., Shershneva, L. P., Krutilina, A. I., Venkstern, T. V., and Bayer, A. A. 1974. The corrected nucleotide sequence of valine tRNA from baker’s yeast. Biochimie. 56: 1211–1213.

    PubMed  CAS  Google Scholar 

  • Harada, F., Kimura, F., and Nishimura, S. 1969. Nucleotide sequence of valine tRNA from E. coli. B. Biochim. Biophys. Acta. 195: 590–592.

    PubMed  CAS  Google Scholar 

  • Harada, F., Kimura, F., and Nishimura, S. 1971. Primary sequence of tRNA’, from E. coli. B. Biochemistry. 10: 3269–3283.

    PubMed  CAS  Google Scholar 

  • Kimura-Harada, F., Saneyoshi, M., and Nishimura, S. 1971. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 13: 335–338.

    Google Scholar 

  • Mirzavekov, A. D., Lastit, D., Leoina, E. S., Undritsov, I. M., and Baev, A. A. 1972. The acceptor activity of dissected baker’s yeast tRNA°a1: Localization of two possible recognition sites of valyl-tRNA ligase. Mol. Biol. 6: 69–84.

    PubMed  CAS  Google Scholar 

  • Mizutani, T., Miyazaki, M., and Takemura, S. 1968. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 64: 839–848.

    CAS  Google Scholar 

  • Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. tRNA I. Biochem. Biophys. Res. Comm. 38: 657–662.

    PubMed  CAS  Google Scholar 

  • Piper, P. W. 1975b. The primary structure of the major cytoplasmic valine tRNA of mouse myeloma cells. Eur. J. Biochem. 51: 295–304.

    PubMed  CAS  Google Scholar 

  • Piper, P. W., and Clark, B. F. 1974a. The nucleotide sequences of cytoplasmic methionine and valine tRNAs from mouse myeloma cells. FEBS Lett. 47: 56–59.

    PubMed  CAS  Google Scholar 

  • Takada-Gurrier, C., Grosjean, H. G., Dirheimer, G., and Keith, G. 1976. The primary structure of tRNA2a’ from B. stearothermophilus. FEBS Lett. 62: 1–3.

    Google Scholar 

  • Takemura, S., Mizutani, T., and Miyazaki, M. 1968a. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 63: 277–278.

    CAS  Google Scholar 

  • Takemura, S., Mizutani, T., and Miyazaki, M. 1968b. The primary structure of valine-I tRNA from Torulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1. J. Biochem. 64: 827–837.

    PubMed  CAS  Google Scholar 

  • Yaniv, M., and Barrell, B. G. 1969. Nucleotide sequence of E. coli. B tRNAva’. Nature. 222: 278–279.

    PubMed  CAS  Google Scholar 

  • Yaniv, M., and Barrell, B. G. 1971. Sequence relationship of three valine acceptor tRNAs from E. coli. Nature New Biol. 233: 113–114.

    CAS  Google Scholar 

  • Zachau, H. G. 1972. Transfer ribonucleic acids. In: Bosch, L., ed., The Mechanism of Protein Synthesis and its Regulation., Amsterdam, North-Holland Publishing Co., p. 173–217.

    Google Scholar 

  • Blank, H. U., and Sö11, D. 1971. The nucleotide sequence of two leucine tRNA species from E. coli. K12. Biochem. Biophys. Res. Comm. 43: 1192–1197.

    PubMed  CAS  Google Scholar 

  • Dube, S. K., Marcker, K. A., and Yudelevich, A. 1970. The nucleotide sequence of a leucine tRNA from E. coli. FEBS Lett. 9: 168–170.

    CAS  Google Scholar 

  • Harada, F., Sato, S., and Nishimura, S. 1972. Unusual CCA-stem structure of E. coli. B tRNA1 s FEBS Lett. 19: 352–355.

    CAS  Google Scholar 

  • Singer, C. E., and Smith, G. R. 1972. Histidine regulation in Salmonella typhimurium. XIII. Nucleotide sequence of histidine tRNA. J. Biol. Chem. 247: 2983–3000.

    Google Scholar 

  • Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 73–74.

    Google Scholar 

  • Comer, M. M., Foss, K., and McClain, W. H. 1975. A mutation of the wobble nucleotide of a bacteriophage T4 tRNA. J. Mol. Biol. 99: 283–293.

    PubMed  CAS  Google Scholar 

  • Folk, W. R., and Yaniv, M. 1972. Coding properties and nucleotide sequences of E. coli. glutamine tRNAs. Nature New Biol. 237: 165–166.

    PubMed  CAS  Google Scholar 

  • Seidman, J. G., Corner, M. M., and McClain, W. H. 1974. Nucleotide alterations in the bacteriophage T4 glutamine tRNA that affect ochre suppressor activity. J. Mol. Biol. 90: 677–689.

    PubMed  CAS  Google Scholar 

  • Murao, K., Tanabe, T., Ishii, F., Namiki, M., and Nishimura, S. 1972. Primary sequence of arginine tRNA from E. coli. Biochem. Biophys. Res. Comm., 47: 1332–1337.

    CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, G. 1972. Nucleotide sequence of tRNAiltrg from brewer’s yeast. FEBS Lett. 28: 353–355.

    PubMed  CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, C. 1975a. The primary structure of tRNAr from brewer’s yeast. Eur. J. Biochem. 56: 521–526.

    PubMed  CAS  Google Scholar 

  • Weissenbach, J., Martin, R., and Dirheimer, G., 1975. Partial digestion with Ti RNase and primary sequence of yeast tRNAllrg. Eur. J. Biochem. 56: 527–532.

    PubMed  CAS  Google Scholar 

  • Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974.. Transfer RNA biosynthesis: The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.

    Google Scholar 

  • Seidman, J. G., Barrell, B. G., and McClain, W. H. 1975. Five steps in the conversion of a large precusor RNA into bacteriophage proline and serine tRNAs. J. Mol. Biol. 99: 733–760.

    PubMed  CAS  Google Scholar 

  • Madison, J. T., and Boguslawski, S. J. 1974. Partial digestion of a yeast lysine tRNA and reconstruction of the nucleotide sequence. Biochemistry. 13: 524–527.

    PubMed  CAS  Google Scholar 

  • Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1972. Nucleotide sequence of a lysine tRNA from baker’s yeast. Science. 176: 687–689.

    PubMed  CAS  Google Scholar 

  • Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1974. Oligonucleotide composition of a yeast lysine tRNA. Biochemistry. 13: 518–523.

    PubMed  CAS  Google Scholar 

  • Smith, C. J., Ley, A. N., D’Obrenan, P., and Mitra, S. K. 1971. The structure and coding specificity of a lysine tRNA from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem., 246: 7817–7829.

    PubMed  CAS  Google Scholar 

  • Smith, C. J., Teh, H. S., Ley, A. N., and D’Obrenan, P. 1973. The nucleotide sequences of the major and minor lysine tRNAs from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem. 248: 4475–4485.

    PubMed  CAS  Google Scholar 

  • Harada, F., and Nishimura, S. 1974. Purification and characterization of AUA specific isoleucine tRNA from E. coli. B. Biochemistry. 13: 300–307.

    PubMed  CAS  Google Scholar 

  • Takemura, S., Murakami, M., and Miyazaki, M. 1969a. Nucleotide sequence of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 489–491.

    CAS  Google Scholar 

  • Takemura, S., Murakami, M., and Miyazaki, M., 1969b. The primary structure of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 553–566.

    CAS  Google Scholar 

  • Yarus, M., and Barre11, B. G. 1971. The sequence of nucleotides in tRNAne from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.

    PubMed  CAS  Google Scholar 

  • Cory, S., and Marcker, K. A. 1970. The nucleotide sequence of methionine tRNAM. J. Biochem. 12: 177–194.

    CAS  Google Scholar 

  • Cory, S., Marcker, K. A., Dube, S. K., and Clark, B. F. C. 1968. Primary structure of a methionine tRNA from E. coli. Nature. 220: 1039–1040.

    CAS  Google Scholar 

  • Dube, S. K., and Marcker, K. A. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 256–262.

    PubMed  CAS  Google Scholar 

  • Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S. 1968. Nucleotide sequence of Nformyl-methionyl-transfer RNA. Nature. 218: 233–234.

    Google Scholar 

  • Dube, S. K. Marcker, K. A., Clark, B. F. C., and Cory, S. 1969. The nucleotide sequence of Nformyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 244–255.

    CAS  Google Scholar 

  • Ecarot-Charrier, B., and Cedergren, R. J. 1976. The preliminary sequence of tRNAFet from Anacystis nidulans. compared with other initiator tRNAs. FEBS Lett. 63: 287–290.

    PubMed  CAS  Google Scholar 

  • Egan, B. Z., Weiss, J. F., and Kelmers, A. D. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E.coli. K-12MO. Biochem. Biophys. Res. Comm. 55: 320–327.

    PubMed  CAS  Google Scholar 

  • Gruhl, H., and Feldmann, H. 1975. The primary structure of a noninitiating methionine specific tRNA from brewer’s yeast. FEBS Lett. 57: 145–148.

    PubMed  CAS  Google Scholar 

  • Högenauer, G., Turnowsky, F., and Unger, F. M. 1972. Codon-anticodon interaction of methionine specific tRNAs. Biochem. Biophys. Res. Comm. 46: 2100–2106.

    PubMed  Google Scholar 

  • Ishikura, H., Yamada, Y., Murao, K., Saneyoshi, M., and Nishimura, S. 1969. The presence of N- [9-(β-D-ribofuranosyl)purine-6yl-carbomoyl]threonine in serine, methionine, and lysine tRNAs from E. coli. Biochem. Biophys. Res. Comm. 37: 990–995.

    CAS  Google Scholar 

  • Koiwai, O., and Miyazaki, M. 1976. The primary structure of non-initiator tRNAMgit from baker’s yeast. J. Biochem. 80: 951–959.

    PubMed  CAS  Google Scholar 

  • Petrissant, G., and Boisnard, M. 1974. Particularités structurales du méthionine tRNA,M„et de foie de lapin. Biochimie. 56: 787–789.

    PubMed  CAS  Google Scholar 

  • Piper, P. W. 1975a. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. Eur. J. Biochem. 51: 283–293.

    PubMed  CAS  Google Scholar 

  • Piper, P. W., and Clark, B. F. C. 1974b. Primary structure of a mouse myeloma cell initiator tRNA. Nature. 247: 516–518.

    PubMed  CAS  Google Scholar 

  • Simsek, M., and RajBhandary, U. L. 1972. The primary structure of yeast initiator tRNA. Biochem. Biophys. Res. Comm. 49: 508–515.

    PubMed  CAS  Google Scholar 

  • Simsek, M., RajBhandary, U. L., Boisnard, M. and Petrissant G. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator tRNAs. Nature. 247: 518–520.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., and Ishikura, H. 1975. Nucleotide sequence of initiator tRNA from B. subtilis. FEBS Lett. 54: 155–158.

    CAS  Google Scholar 

  • Ish-Horowicz, D., and Clark, B. F. C. 1973. The nucleotide sequence of a serine tRNA from E. coli. J. Biol. Chem. 248: 6663–6673.

    CAS  Google Scholar 

  • Rogg, H., Müller, P., and Staehelin, M. 1975. Nucleotide sequences of rat liver serine tRNA. Eur. J. Biochem. 53: 115–127.

    CAS  Google Scholar 

  • Yamada, Y., and Ishikura, H. 1973. Nucleotide sequence of tRNA3er from E. coli. FEBS Lett. 29: 231–234.

    CAS  Google Scholar 

  • Clarke, L., and Carbon, J. 1974. The nucleotide sequence of a threonine tRNA from E. coli. J. Biol. Chem. 249: 6874–6885.

    CAS  Google Scholar 

  • Kuntzel, B., Weissenbach, J. and Dirheimer, G. 1972. The sequence of nucleotides in tRNAftig from brewer’s yeast. FEBS Lett. 25: 189–191.

    PubMed  CAS  Google Scholar 

  • Kuntzel, B., Weissenbach, J., and Dirheimer, G. 1974. Structure primaire des tRNAfirg de levure de bière. Biochimie. 56: 1069–1087.

    PubMed  CAS  Google Scholar 

  • Blobstein, S. H., Grunberger D., Weinstein, I. B., and Nakanishi, K. 1973. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine tRNA. Biochemistry. 12: 188–193.

    PubMed  CAS  Google Scholar 

  • Dudock, B. S., and G. Katz. 1969. Large oligonucleotide sequences in wheat germ phenylalanine tRNA. J. Biol. Chem., 244: 3069–3074.

    PubMed  CAS  Google Scholar 

  • Dudock, B. S., Katz, G., Taylor, E. K., and Holley, R. W. 1969. Primary structure of wheat germ phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.

    PubMed  CAS  Google Scholar 

  • Everett, G. A., and Madison, J. T. 1976. Nucleotide sequence of tRNAPhe from pea (Pisum sativum., Alaska). Biochemistry. 15: 1016–1021.

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C., Dirheimer, G., Grosjean, H., and Keith, G. 1975. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 60: 286–289.

    CAS  Google Scholar 

  • Harbers, K., Thiebe, R., and Zachau, H. G. 1972. Preparation and characterization of fragments from yeast tRNAPhe. Eur. J. Biochem. 26: 132–143.

    PubMed  CAS  Google Scholar 

  • Keith, G., Ebel, J. P., and Dirheimer, G. 1974. The primary structure of two mammalian tRNAsPhe: Identity of calf liver and rabbit liver tRNAsPhe. FEBS Lett. 48: 50–52.

    PubMed  CAS  Google Scholar 

  • Keith, G., Picaud, F., Weissenbach, J., Ebel, J. P., Petrissant, G., and Dirheimer, G. 1973. The primary structure of rabbit liver tRNAPhe and its comparison with known tRNAPhe sequences. FEBS Lett. 31: 345–347.

    PubMed  CAS  Google Scholar 

  • Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three-dimensional structure of yeast phenylalanine tRNA: Folding of the polynucleotide chain. Science. 179: 285–288.

    PubMed  CAS  Google Scholar 

  • Kim, S. H.,. Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974. Three-dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.

    CAS  Google Scholar 

  • Nakanishi, K., Furutachi, N., Funamizu, M., Grunberger, D., and Weinstein, I. B. 1970. Structure of the fluorescent Y base from yeast phenylalanine tRNA. J. Am. Chem. Soc. 92: 7617–7619.

    PubMed  CAS  Google Scholar 

  • Philippsen, P., and Zachau, H. G. 1971. Fragments of yeast tRNAPhe and tRNASer prepared by partial digestion with spleen phosphodiesterase. FEBS Lett. 15: 69–74.

    PubMed  CAS  Google Scholar 

  • Pongo, O., Bald, R., and Reinwald, E. 1973. On the structure of yeast tRNAPhe: Complementaryoligonucleotide binding studies. Eur. J. Biochem. 32: 117–125.

    Google Scholar 

  • RajBhandary, U. L., Chang, S. H., Sneider, J., and Davis, D. 1968. Yeast phenylalanine tRNA: Partial digestion with ribonuclease T1, and derivation of the total primary structure. J. Biol. Chem. 243: 598–608.

    Google Scholar 

  • RajBhandary, U. L., Chang, S. H., Stuart, A., Faulkner, R. D., Hoskinson, R. M., and Khorana, H. G. 1967. The primary structure of yeast phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 57: 751–758.

    Google Scholar 

  • Rosenfeld, A., Stevens, C. L., and Printz, M. P. 1970. Studies on the secondary structure of phenylalanyl tRNA. Biochemistry. 9: 4971–4980.

    PubMed  CAS  Google Scholar 

  • Takemura, S., Kasai, H., and Goto, M. 1974. Nucleotide sequence of the anticodon region of Torulopsis. phenylalanine tRNA. J. Biochem. 75: 1169–1172.

    PubMed  CAS  Google Scholar 

  • Uziel, M., and Gassen, H. G. 1969. Structure of tRNAPke. Fed. Proc. 28: 409.

    Google Scholar 

  • Wong, Y. P., Kearns, D. R., Shulman, R. G., Yamane, T., Chang, S., Chirskyian, J. G., and Fresco, J. R. 1973. High resolution NMR study of base pairing in the native and denatured conformers of tRNA. J. Mol. Biol. 74: 403–406.

    PubMed  CAS  Google Scholar 

  • Altman, S., and Smith, J. D. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233: 35–39.

    PubMed  CAS  Google Scholar 

  • Doctor, B. P., Loebel, J. E., and Kellog, D. A. 1966. Studies on the species specificity of yeast and E. coli. tyrosine tRNA2. Cold Spring Harbor Symp. Quant. Biol. 31: 543–548.

    PubMed  CAS  Google Scholar 

  • Doctor, B. P., Loebel, J. E., Sodd, M. A. and Winter, D. B. 1969. Nucleotide sequence of E. coli. tyrosine tRNA. Science. 163: 693–695.

    PubMed  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.

    PubMed  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.

    CAS  Google Scholar 

  • Harada, F., Gross, H. J., Kimura, F., Chang, S. H., Nishimura, S., and RajBhandary, U. L. 1968. 2-methylthio N6-(12-isopentenyl) adenosine: A component of E. coli. tyrosine tRNA. Biochem. Biophys. Res. Comm. 33: 299–306.

    Google Scholar 

  • Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.

    CAS  Google Scholar 

  • Hachimoto, S., Takemura, S., and Miyazaki, M. 1972. Partial digestion with ribonuclease T, and derivation of the complete sequence of tRNATYr from Torulopsis utilis. J. Biochem. 72: 123–134.

    Google Scholar 

  • Madison, J. T., Everett, G. A., and Kung, H. 1966a. Nucleotide sequence of a yeast tyrosine tRNA. Science. 153: 531–534.

    PubMed  CAS  Google Scholar 

  • Madison, J. T. Everett, G. A., Kung, H. 1966b. On the nucleotide sequence of yeast tyrosine tRNA. Cold Spring Harbor Symp. Quant. Biol. 31: 409–416.

    CAS  Google Scholar 

  • Madison, J. T., Everett, G. A., Kung, H. 1967. Oligonucleotides from yeast tyrosine tRNA. J. Biol. Chem. 242: 1318–1323.

    PubMed  CAS  Google Scholar 

  • Madison, J. T., and Kung, 11.-K. 1967. Large oligonucleotides isolated from yeast tyrosine tRNA after partial digestion with ribonuclease T1. Science. 242: 1324–1330.

    CAS  Google Scholar 

  • Seno, T., and Nishimura, S. 1971. Cleavage of E. coli. tyrosine tRNA2 in S-region and its effects on the structure and function of the reconstituted molecules. Biochim. Biophys. Acta. 228: 141–152.

    PubMed  CAS  Google Scholar 

  • Takemura, S., Hashimoto, S., and Miyazaki, M. 1972. Complete digestion of tyrosine tRNA from Torulopsis utilis. with pancreatic and T1 ribonucleases. J. Biochem. 72: 111–121.

    PubMed  CAS  Google Scholar 

  • Ginsberg, T., Rogg, H., and Staehelin, M. 1971. Nucleotide sequences of rat liver serine-tRNA. Eur. J. Biochem. 21: 249–257.

    PubMed  CAS  Google Scholar 

  • Hentzen, D., and Garet, J. P. 1976. Anticodon loop sequences of tRNAccA and tRNA cA from the posterior silkgland of Bombyx mori. L. Biochem. Biophys. Res. Comm. 71: 241–248.

    PubMed  CAS  Google Scholar 

  • Ishikura, H., Yamada, Y., and Nishimura, S. 1971a. The nucleotide sequence of a serine tRNA from E. coli. FEBS Lett. 16: 68–70.

    CAS  Google Scholar 

  • Ishikura, H., Yamada, Y., and Nishimura, S. 1971b. Structure of serine tRNA from E. coli. Biochim. Biophys. Acta. 228: 471–481.

    CAS  Google Scholar 

  • McClain, W. H., Barrell, B. G., and Seidman, J. G. 1975. Nucleotide alterations in bacteriophage T4 serine tRNA that affect the conversion of precursor RNA into tRNA. J. Mol. Biol. 99: 717–732.

    PubMed  CAS  Google Scholar 

  • Rogg, H., and Staehelin, M. 1971a. Nucleotide sequences of rat liver serine-tRNA. 1. Products of digestion with pancreatic ribonuclease. Eur. J. Biochem. 21: 235–242.

    PubMed  CAS  Google Scholar 

  • Rogg, H., and Staehelin, M. 1971b. Nucleotide sequence of rat liver serine-tRNA. 2. The products of digestion with ribonuclease T1. Eur. J. Biochem. 21: 243–248.

    PubMed  CAS  Google Scholar 

  • Staehelin, M. 1971. The primary structure of tRNA. Experientia., 27: 1–11.

    PubMed  CAS  Google Scholar 

  • Staehelin, M., Rogg, H., Baguley, B. C., Ginsberg, T., and Wehrli, W. 1968. Structure of a mammalian serine tRNA. Nature. 219: 1363–1365.

    PubMed  CAS  Google Scholar 

  • Zachau, H. G., Dütting, D., and Feldmann, H. 1966a. Nucleotidsequenzen zweier serinspezifischer Transfer-Ribonucleinsäuren. Angew. Chem., 78: 392–393.

    Google Scholar 

  • Zachau, H. G., Dütting, D., and Feldmann, H. 1966b. Serine specific tRNAs. Hoppe-Seyler’s Z. Phys. Chem. 347: 229–235.

    Google Scholar 

  • Hirsch, D. 1970. Tryptophan tRNA of E. coli. Nature. 228: 57.

    Google Scholar 

  • Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.

    Google Scholar 

  • Keith, G., Roy, A., Ebel, J. P., and Dirheimer, G. 1971. The nucleotide sequences of two tryptophan-tRNAs from brewer’s yeast. FEBS Lett. 17: 306–308.

    PubMed  CAS  Google Scholar 

  • Maugh, T. H. 1974. Rous sarcoma virus: A new role for tRNA. Science. 186: 41.

    PubMed  Google Scholar 

  • Chang, S. H., Kuo, S., Hawkins, E., and Miller, N. R., 1973. The corrected nucleotide sequence of yeast leucine tRNA. Biochem. Biophys. Res. Comm. 51: 951–955.

    PubMed  CAS  Google Scholar 

  • Chang, S. H., and Miller, N. 1971. The nucleotide sequence of yeast leucine tRNA. Fed. Proc. 30: 1101.

    Google Scholar 

  • Kowalski, S., Yamane, T., and Fresco, J. R. 1971. Nucleotide sequence of the “denaturable” leucine tRNA from yeast. Science. 172: 385–387.

    PubMed  CAS  Google Scholar 

  • Pinkerton, T. C., Paddock, G., and Abelson, J. 1972. Bacteriophage T4 tRNA Leu. Nature New Biol. 240: 88–90.

    PubMed  CAS  Google Scholar 

  • Pinkerton, T. C., Paddock, G., and Abelson, J. 1973. Nucleotide sequence determination of bacteriophage T4 leucine tRNA. J. Biol. Chem. 248: 6348–6365.

    PubMed  CAS  Google Scholar 

  • Holness, N.J., and Atfield, G. 1974. Nucleotide sequence of tRNAcys from baker’s yeast. FEBS Lett. 46: 268–270.

    PubMed  CAS  Google Scholar 

  • Holness, N. J., and Atfield, G. 1976a. The extraction and purification of a cysteine tRNA from baker’s yeast. Biochem. J. 153: 429–435.

    PubMed  CAS  Google Scholar 

  • Holness, N. J., and Atfield, G. 1976b. The nucleotide sequence of cysteine tRNA from baker’s yeast. Biochem. J. 153: 447–454.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1978). The Transfer Ribonucleic Acids. In: The Genetic Mechanism and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2436-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2436-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2438-6

  • Online ISBN: 978-1-4684-2436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics