Skip to main content

The Genetic Mechanism: II The Cell’s Employment of DNA

  • Chapter
The Genetic Mechanism and the Origin of Life
  • 98 Accesses

Abstract

Throughout the foregoing discussion, it became increasingly evident that the DNA molecule is completely dependent upon proteins for its every action. Replication was seen to proceed only in the presence of a series of enzymes, as did the synthesis of the nucleotides and their modification after incorporation. Even the structuring of the molecule into chromosomes or nucleoids required action from certain proteins. Hence DNA by itself is obviously inert, an attribute that cannot fail to preclude its being the first molecule of life—proteins certainly, and RNAs possibly, had to precede it in living systems. Although its absence of chemical activity bars DNA from further consideration in the search for the properties of the earliest protobiont, its presence should be expected in the genetic apparatus of the most advanced forms. Were the DNA molecule to participate actively in metabolism, it would of necessity undergo molecular changes. But through its inertness it remains stable, and through its stability it is capable of providing the same precise information to generation after generation of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D. J. 1971. Proposed detailed structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.

    PubMed  CAS  Google Scholar 

  • Adams, J. M., and Cory, S. 1970. Untranslated nucleotide sequence at the 5’-end of R17 bacteriophage RNA. Nature. 227: 570–574.

    PubMed  CAS  Google Scholar 

  • Adams, J. M., and Cory, S. 1975. Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA. Nature. 255: 28–33.

    PubMed  CAS  Google Scholar 

  • Adesnik, M., and Darnell, J. E. 1972. Biogenesis and characterization of histone mRNA in HeLa cells. J. Mol. Biol. 67: 397–406.

    PubMed  CAS  Google Scholar 

  • Ajtkhozhin, M. A., and Akhanov, A. U. 1974. Release of mRNP-particles of the informosome type from polyribosomes of higher plant embryos. FEBS Lett. 41: 275–279.

    PubMed  CAS  Google Scholar 

  • Allende, J. E., Monro, R., and Lipmann, F. 1964. Resolution of the E. coli. amino acyl sRNA transfer factor into two complementary fractions. Proc. Nat. Acad. Sci. USA. 51: 1211–1216.

    Google Scholar 

  • Ames, B. N., and Hartman, P. E. 1963. The histidine operon. Cold Spring Harb. Symp. Quant. Biol. 28: 349–356.

    CAS  Google Scholar 

  • Anderson, J. S., Bretscher, M. S., Clark, B. F. C., and Marcher, K. A. 1967. A GTP requirement for binding initiator tRNA to ribosomes. Nature. 215: 490–492.

    PubMed  CAS  Google Scholar 

  • Arias, I. M., Doyle, D., and Schimke, R. T. 1969. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. Biol. Chem. 244: 3303–3315.

    PubMed  CAS  Google Scholar 

  • Attardi, G., Huang, P. C., and Kabat, S. 1965. Recognition of rRNA sites in DNA. Proc. Nat. Acad. Sci. USA. 53: 1490–1498.

    PubMed  CAS  Google Scholar 

  • Averner, M. J., and Pace, N. R. 1972. The nucleotide sequence of marsupial 5 S ribosomal RNA. J. Biol. Chem. 247: 4491–4493.

    PubMed  CAS  Google Scholar 

  • Ayuso-Parilla, M., Henshaw, E. C., and Hirsch, C. A. 1973a. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4386–4393.

    PubMed  CAS  Google Scholar 

  • Ayuso-Parilla, M., Hirsch, C. A., and Henshaw, E. C. 1973b. Release of the nonribosomal proteins from the mammalian native 40S ribosomal subunit by aurintricarboxylic acid. J. Biol. Chem. 248: 4394–4399.

    PubMed  CAS  Google Scholar 

  • Bag, J., and Sarkar, S. 1975. Cytoplasmic nonpolysomal mRNP containing actin mRNA in chicken embryonic muscles. Biochemistry. 14: 3800–3807.

    PubMed  CAS  Google Scholar 

  • Ball, L. A. 1973. Mutual influence of the secondary structure and informational content of a mRNA. J. Theor. Biol. 4: 243–247.

    Google Scholar 

  • Barrieux, A., Ingraham, H. A., David, D. N., and Rosenfeld, M. G. 1975. Isolation of messenger-like RNPs. Biochemistry. 14:1815–1821.

    Google Scholar 

  • Beaudet, A. L., and Caskey, C. T. 1971. Mammalian peptide chain termination. Proc. Nat. Acad. Sci. USA. 68: 619–624.

    PubMed  CAS  Google Scholar 

  • Bell, E., and Reeder, R. 1965. Short-and long-lived mRNA in embryonic chick lens. Science. 150: 71–72.

    PubMed  Google Scholar 

  • Bellmare, G., Jordan, B. R., Rocca-Serra, J., and Monier, R. 1972. Accessibility of E. coli. 5. S RNA base residues to chemical reagents. Biochimie. 54: 1453–1466.

    Google Scholar 

  • Bellmare, G., Vigne, R., and Jordan, B. R. 1973. Interaction between E. coli. ribosomal proteins and 5 S RNA molecules. Biochimie. 55: 29–35.

    Google Scholar 

  • Benhamou, J., and Jordan, B. R. 1976. Nucleotide sequence of D. melanogaster. 5. S RNA. FEBS Lett. 62: 146–149.

    PubMed  CAS  Google Scholar 

  • Benhamou, J., Jourdan, R., and Jordan, B. R. 1977. Sequence of Drosophila. 5. S RNA synthesized by cultured cells and by the insect at different developmental stages. J. Mol. Evol. 9: 279–298.

    PubMed  CAS  Google Scholar 

  • Berns, A. J. M., Strous, G. J. A. M., and Bloemendal, H. 1972. Heterologous in vitro. synthesis of lens a-crystallin polypeptide. Nature New Biol. 236: 7–9.

    PubMed  CAS  Google Scholar 

  • Billeter, M. A., Dahlberg, J. E., Goodman, H. E., Hindley, J., and Weissmann, C. 1969. Sequence of first 175 nucleotides from the 5’-terminus of Qß RNA synthesized in vitro. Nature. 224: 1083–1086.

    CAS  Google Scholar 

  • Bishop, J. O., Morton, J. G., Rosbach, M., and Richardson, M. 1974. Three abundance classes in HeLa cell mRNA. Nature. 250: 199–204.

    PubMed  CAS  Google Scholar 

  • Bitar, K. G. 1975. The primary structure of the ribosomal protein L29 from E. coli. Biochim. Biophys. Acta. 386: 99–106.

    CAS  Google Scholar 

  • Bitar, K. G., and Wittmann-Liebold, B. 1975. The primary structure of the 5 S rRNA binding protein L25 of E. coli. Hoppe-Seyler’s Zeit. Phys. Chem. 356: 1343–1352.

    CAS  Google Scholar 

  • Blobel, G. 1972. Protein tightly bound to globin mRNA. Biochem. Biophys. Res. Comm. 47: 88–95.

    PubMed  CAS  Google Scholar 

  • Blobel, G. 1973. A protein of molecular weight 78,000 bound to the poly(A) region of eukaryotic mRNAs. Proc. Nat. Acad. Sci. USA. 70: 924–928.

    PubMed  CAS  Google Scholar 

  • Bloemendal, H. 1977. The vertebrate eye lens. Science. 197: 127–138.

    PubMed  CAS  Google Scholar 

  • Blundell, M., Craig, E., and Kennell, D. 1972. Decay rates of different mRNA in E. coli. and models of decay. Nature New Biol. 238: 46–49.

    PubMed  CAS  Google Scholar 

  • Bollini, R., Soffientini, A. N., Bertani, A., and Lanzani, G. A. 1974. Some molecular properties of the elongation factor EF-1 from wheat embryos. Biochemistry. 13: 5421–5425.

    PubMed  CAS  Google Scholar 

  • Bonnet, J., and Ebel,.1. P. 1972. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNAva’ with yeast valyl-tRNA synthetase. Eur. J. Biochem. 31: 335–344.

    PubMed  CAS  Google Scholar 

  • Bonnet, J., and Ebel, J. P. 1974. Correction of aminoacylation errors: evidence for a nonsignificant role of the aminoacyl-tRNA synthetase catalyzed deacylation of aminoacyl-tRNAs. FEBS Lett. 39: 259–262.

    PubMed  CAS  Google Scholar 

  • Bonnet, J., Giegé, R., and Ebel, J. P. 1972. Lack of specificity in the aminoacyl-tRNA synthetasecatalysed deacylation of aminoacyl-tRNA. FEBS Lett. 27: 139–144.

    PubMed  CAS  Google Scholar 

  • Bostock, C. J., Prescott, D. M., and Lauth, M. 1971. Lability of 26 S rRNA in Tetrahymena pyriformis. Exp. Cell Res. 66: 260–262.

    CAS  Google Scholar 

  • Branlant, C., and Ebel, J.-P. 1977. Studies on the primary structure of E. coli. 23 S RNA. Nucleotide sequence of the ribonuclease Tl digestion products containing more than one uridine residue. J. Mol. Biol. 111: 215–256.

    PubMed  CAS  Google Scholar 

  • Brenner, S., Jacob, F., and Meselson, M. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 190: 576–581.

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S. 1965. Fractionation of oligolysyl-adenosine complexes derived from polylysine attached to tRNA. J. Mol. Biol. 12: 913–919.

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S. 1966. Polypeptide chain initiation and the characterization of ribosomal binding in E. coli. Cold Spring Harbor Symp. Quant. Biol. 31: 289–296.

    CAS  Google Scholar 

  • Bretscher, M. S. 1968. Direct translation of a circular mRNA. Nature. 220: 1088–1091.

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S. 1969. Direct translation of bacteriophage fd DNA in the absence of neomycin B. J. Mol. Biol. 42: 595–598.

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S., Goodman, H. M., Menninger, J. R., and Smith, J. D. 1965. Polypeptide chain termination using synthetic polynucleotides. J. Mol. Biol. 14: 634–639.

    PubMed  CAS  Google Scholar 

  • Brinacombe, R., Nierhaus, K. H., Garrett, R. A., and Wittmann, H. G. 1976. The ribosome of E. coli. Progr. Nucl. Acid Res. Mol. Biol. 18:1–44, 323–325.

    Google Scholar 

  • Brosius, J., and Chen, R. 1976. The primary structure of protein L16 located at the peptidyl-transferase center of E. coli. ribosomes. FEBS Lett. 68: 105–109.

    PubMed  CAS  Google Scholar 

  • Brosius, J., Schiltz, E., and Chen, R. 1975. The primary structure of the 5 S RNA binding protein L18 from E. coli. ribosomes. FEBS Lett. 56: 359–361.

    PubMed  CAS  Google Scholar 

  • Brot, N., Tate, W. P., Caskey, C.-T., and Weissbach, H. 1974. The requirement for ribosomal proteins L7 and L12 in peptide-chain termination. Proc. Nat. Acad. Sci. USA. 71: 89–92.

    PubMed  CAS  Google Scholar 

  • Brouwer, J., and Planta, R. J. 1975. The origin of high molecular weight proteins in ribosomal preparations of Bacillus licheniformis. FEBS Lett. 53: 73–75.

    CAS  Google Scholar 

  • Brown, D. D., and Weber, C. S. 1968. Unique DNA sequences homologous to 4 S RNA, 5 S RNA, and rRNA. J. Mol. Biol. 34: 661–680.

    PubMed  CAS  Google Scholar 

  • Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of 5 S DNA from Xenopus laevis. Proc. Nat. Acad. Sci. USA. 68: 3175–3179.

    CAS  Google Scholar 

  • Brown, G. L. 1963. Preparation, fractionation, and properties of sRNA. Progr. Nucl. Acid Res. 2: 259–310.

    CAS  Google Scholar 

  • Brown, J. C., and Doty, P. 1968. Protein factor requirement for binding of mRNA to ribosomes. Biochem. Biophys. Res. Comm. 30: 284–291.

    PubMed  CAS  Google Scholar 

  • Brownlee, G. G., Cartwright, E., McShane, T., and Williamson, R. 1972. The nucleotide sequence of somatic 5 S RNA from Xenopus laevis. FEBS Lett. 25: 8–12.

    CAS  Google Scholar 

  • Brownlee, G. G., Sanger, F., and Barrell, B. G. 1967. Nucleotide sequence of 5 S rRNA from E. coli. Nature. 215: 735–736.

    CAS  Google Scholar 

  • Brownlee, G. G., Sanger, F., and Barrell, B. G. 1968. The sequence of 5 S rRNA. J. Mol. Biol. 34: 379–412.

    PubMed  CAS  Google Scholar 

  • Bryan, R. N., and Hayashi, M. 1973. Two proteins are bound to most species of polysomal mRNA. Nature New Biol. 244: 271–274.

    PubMed  CAS  Google Scholar 

  • Buckingham, M. E., Caput, D., Cohen, A., Whalen, R. G., and Gros, F. 1974. The synthesis and stability of cytoplasmic mRNA during myoblast differentiation in culture. Proc. Nat. Acad. Sci. USA. 71. :1466–1470.

    Google Scholar 

  • Burr, H., and Lingrel, J. B. 1971. Poly A sequences at the 3’ termini of rabbit globin mRNAs. Nature New Biol. 233: 41–43.

    PubMed  CAS  Google Scholar 

  • Burstein, Y., Kantor, F., and Schechter, I. 1976. Partial amino-acid sequence of the precursor of an immuno-globulin light chain containing NH2-terminal pyroglutamic acid. Proc. Nat. Acad. Sci. USA. 73: 2604–2608.

    PubMed  CAS  Google Scholar 

  • Busby, W. F., Hele, P., and Chang, M. C. 1974. Apparent amino acid incorporation by ejaculated rabbit spermatozoa. Biochim. Biophys. Acta. 330: 246–259.

    Google Scholar 

  • Busiello, E., and DiGirolamo, M. 1973. Aminoacyl-tRNA binding sites in E. coli. and reticulocyte ribosomes. FEBS Lett. 35: 341–343.

    PubMed  CAS  Google Scholar 

  • Campo, M. S., and Bishop, J. O. 1974. Two classes of mRNA in cultured rat cells. J. Mol. Biol. 90: 649–663.

    PubMed  CAS  Google Scholar 

  • Cann, A., Gambino, R., Banks, J., and Bank, A. 1974. Poly(A) sequences and biological activity from human globin mRNA. J. Biol. Chem. 249: 7536–7540.

    PubMed  CAS  Google Scholar 

  • Cantor, C. R. 1967. Possible conformations of 5 S rRNA. Nature. 216: 513–514.

    PubMed  CAS  Google Scholar 

  • Cantor, C. R. 1968. The extent of base pairing in 5 S rRNA. Proc. Nat. Acad. Sci. USA. 59: 478–483.

    PubMed  CAS  Google Scholar 

  • Cashion, L. M., and Stanley, W. M. 1974. Two eukaryotic initiation factors (IF-I and IF-II) of protein synthesis that are required to form an initiation complex with rabbit reticulocyte ribosomes. Proc. Nat. Acad. Sci. USA. 71: 436–440.

    PubMed  CAS  Google Scholar 

  • Caskey, C. T. 1973. Peptide chain termination. Adv. Prot. Chem. 27: 243–276.

    CAS  Google Scholar 

  • Caskey, C. T., Beaudet, A. L., and Tate, W. P. 1974. Mammalian release factor. Methods Enzymol. 30: 293–303.

    PubMed  CAS  Google Scholar 

  • Caskey, T., Leder, P., Moldave, K., and Schlessinger, D. 1972. Translation: Its mechanism and control. Science. 176: 195–197.

    PubMed  CAS  Google Scholar 

  • Ceccarini, C., and Maggio, R. 1968. Studies on the ribosomes from the cellular slime molds, Dictyostelium discoideum. and D. purpureum. Biochim. Biophys. Acta. 166: 134–141.

    CAS  Google Scholar 

  • Cedergren, R. J., and Sankoff, D. 1976. Evolutionary origin of 5.8 S rRNA. Nature. 260:74–75. Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. 11: 489–525.

    Google Scholar 

  • Chatterjee, S. K., Kazemie, M., and Matthaei, H. 1973. Separation of the ribosomal proteins by two-dimensional electrophoresis. Hoppe-Seyler’s Z. Phys. Chem. 354: 481–486.

    CAS  Google Scholar 

  • Chen, R., and Ehrke, G. 1976. The primary structure of protein L34 from the large ribosomal subunit of E. coli. FEBS Lett. 63: 215–217.

    CAS  Google Scholar 

  • Chen, R., Mende, L., and Arfsten, U. 1975. The primary structure of protein L27 from the peptidyl-tRNA binding site of E. coli. ribosomes. FEBS Lett. 59: 96–99.

    PubMed  CAS  Google Scholar 

  • Chen, R., and Wittmann-Liebold, B. 1975. The primary structure of protein S9 from the 30 S subunit of E. coli. ribosomes. FEBS Lett. 52: 139–140.

    PubMed  CAS  Google Scholar 

  • Cimadevilla, J. M., and Hardesty, B. 1975. Isolation and partial characterization of a 40 S riboso- mal subunit-tRNA binding factor from rabbit reticulocytes. J. Biol. Chem. 250: 4389–4397.

    PubMed  CAS  Google Scholar 

  • Clark, B. F. C., and Marcker, K. A. 1966. The role of N-formyl-methionyl-sRNA in protein biosynthesis. J. Mol. Biol. 17: 394–406.

    PubMed  CAS  Google Scholar 

  • Cole, P. E., and Crothers, D. H. 1972. Conformational changes of tRNA. Biochemistry. 11: 4368–4374.

    PubMed  CAS  Google Scholar 

  • Cole, P. E., Young, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Equilibrium phase diagrams. Biochemistry. 11: 4358–4368.

    PubMed  CAS  Google Scholar 

  • Comb, D. G., and Sarkar, N. 1967. The binding of 5 S rRNA to ribosomal subunits. J. Mol. Biol. 25: 317–330.

    PubMed  CAS  Google Scholar 

  • Contreras, R., Vandenberghe, A., Min Jou, W., de Wachter, R., and Fiers, W. 1971. Studies on the bacteriophage MS2 nucleotide sequence of a 3’-terminal fragment (n =. 104). FEBS Lett. 18: 141–144.

    PubMed  CAS  Google Scholar 

  • Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W. 1973. Bacteriophage MS2 RNA: nucleotide sequence of the end of the A protein gene on the intercistronic region. Nature New Biol. 241: 99–101.

    PubMed  CAS  Google Scholar 

  • Conway, T. W., and Lipmann, F. 1964. Characterization of a ribosome-linked guanosine triphosphatase in E. coli. extracts. Proc. Nat. Acad. Sci. USA. 52: 1462–1469.

    PubMed  CAS  Google Scholar 

  • Cornick, G. G., and Kretsinger, R. H. 1977. The 30 S subunit of the E. coli. ribosome. Biochim. Biophys. Acta. 474: 398–410.

    PubMed  CAS  Google Scholar 

  • Corry, M. J., Payne, P. I., and Dyer, T. A. 1974a. The nucleotide sequence of 5 S rRNA from the blue-green alga Anacystis nidulans. FEBS Lett. 46: 63–66.

    CAS  Google Scholar 

  • Cony, M. J., Payne, P. I., and Dyer, T. A. 1974b. A sequence analysis of 5 S rRNA from the blue-green alga Oscillatoria tenuis. and a comparison of blue-green alga 5 S rRNA with those of bacterial and eukaryotic origin. FEBS Lett. 46: 67–70.

    Google Scholar 

  • Cox, R. A. 1970. A spectrophotometric study of the secondary structure of RNA isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes. Biochem. J. 117: 101–118.

    PubMed  CAS  Google Scholar 

  • Cox, R. A., Gould, H., and Kanagalingam, K. 1968. A study of the alkaline hydrolysis of fractionated reticulocyte rRNA and its relevance to secondary structure. Biochem. J. 106: 733–741.

    PubMed  CAS  Google Scholar 

  • Cramer, F. 1969. Three-dimensional structure of tRNA. Progr. Nucl. Acid. Res. 11: 391–421.

    Google Scholar 

  • Cramer, F., and Erdman, V. A. 1968. Amount of adenine and uracil base pairs in E. coli. 23 S, 16 S, and 5 S rRNA. Nature. 218: 92–93.

    PubMed  CAS  Google Scholar 

  • Cremer, K., and Schlessinger, D. 1974. Ca’ ions inhibit mRNA degradation but permit mRNA transcription and translation in DNA-coupled systems from E. coli. J. Biol. Chem. 249: 4730–4736.

    CAS  Google Scholar 

  • Crick, F. H. C. 1966. The genetic code: Yesterday, today, and tomorrow. Cold Spring Harbor Symp. Quant. Biol. 31: 3–10.

    CAS  Google Scholar 

  • Crick, F. H. C. 1967. The genetic code. Proc. Roy. Soc. London. B167: 331–347.

    CAS  Google Scholar 

  • Crick, F. H. C., Barnett, L., Brenner, S., and Watts-Tobin, R. J. 1961. General nature of the genetic code for proteins. Nature. 192: 1227–1232.

    PubMed  CAS  Google Scholar 

  • Crystal, R. A., and Anderson, W. F. 1972. Initiation of hemoglobin synthesis. Proc. Nat. Acad. Sci. USA. 69: 706–711.

    PubMed  CAS  Google Scholar 

  • Crystal, R. A., Elson, N. A., and Anderson, W. F. 1974. Initiation of globin synthesis. Methods Enzymol. 30: 101–127.

    PubMed  CAS  Google Scholar 

  • Czernilofsky, A. P., Collatz, E. E., Stöffler, G., and Kuechler, E. 1974. Proteins at the tRNA binding sties of E. coli. ribosomes. Proc. Nat. Acad. Sci. USA. 71: 230–234.

    PubMed  CAS  Google Scholar 

  • Dahlberg, A. E. 1974. Two forms of the 30 S ribosomal subunit of E. coli. J. Biol. Chem. 249: 7673–7678.

    CAS  Google Scholar 

  • Darnell, J. E., Wall, R., and Tushinski, R. J. 1971. An adenylic acid-rich sequence in mRNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc. Nat. Acad. Sci. USA. 68: 1321–1325.

    PubMed  CAS  Google Scholar 

  • Davidson, J. N. 1972. The Biochemistry of the Nucleic Acids. 7th Ed., New York, Academic Press.

    Google Scholar 

  • Daya-Grosjean, L., Reinbolt, J., Pongs, O., and Garrett, R. A. 1974. A study of the regions of ribosomal proteins S4, S8, S15, and S20 that interact with 16 S RNA of E. coli. FEBS Lett. 44: 253–256.

    CAS  Google Scholar 

  • Dayhoff, M. O. 1972. Atlas of Protein Sequence and Structure. 1972. Washington, National Biomedical Research Foundation.

    Google Scholar 

  • Diez, J., and Brawerman, G. 1974. Elongation of the poly(A) segment of mRNA in the cytoplasm of mammalian cells. Proc. Nat. Acad. Sci. USA. 71: 4091–4095.

    PubMed  CAS  Google Scholar 

  • Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution. 16: 102–117.

    Google Scholar 

  • Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool. 12: 71–82.

    Google Scholar 

  • Dillon, L. S. 1973. The origins of the genetic code. Bot. Rev. 39: 301–345.

    CAS  Google Scholar 

  • Dillon, L. S. 1978. Evolution: Concepts and Consequences. 2nd Ed., St. Louis, Mo., C. V. Mosby Co.

    Google Scholar 

  • Dina, D., Crippa, M., and Beccari, E. 1973. Hybridization properties and sequence arrangement in a population of mRNAs. Nature New Biol. 242: 101–105.

    PubMed  CAS  Google Scholar 

  • Dina, D., Meza, I., and Crippa, M. 1974. Relative positions of the `repetitive,’ `unique’ and poly(A) fragments of mRNA. Nature. 248: 486–490.

    PubMed  CAS  Google Scholar 

  • Dohme, F., and Nierhaus, K. H. 1976. Role of 5 S RNA in assembly and function of the 50 S subunit from E. coli. Proc. Nat. Acad. Sci. USA. 73: 2221–2225.

    CAS  Google Scholar 

  • Dovgas, N. V., Markova, L. F., Mednikova, T. A., Vinokurov, L. M., Alakhov, Y. B., and Ovchinnihov, Y. A. 1975. The primary structure of the 5 S RNA binding protein L25 from E. coli. ribosomes. FEBS Lett. 53: 351–354.

    PubMed  CAS  Google Scholar 

  • Dovgas, N. V., Vinokurov, L. M., Velmoga, I. S., Alakhov, Y. B., and Ovchinnikov, Y. A. 1976. The primary structure of protein L10 from E. coli. ribosomes. FEBS Lett. 67: 58–61.

    PubMed  CAS  Google Scholar 

  • Drews, J., Bednarik, K., and Grasmuck, H. 1974. Elongation factor 1 from Krebs H mouse ascites cells. Eur. J. Biochem. 41: 217–227.

    PubMed  CAS  Google Scholar 

  • Dube, S. K. 1973. Recognition of tRNA by the ribosome. A possible role of 5 S RNA. FEBS Lett. 36: 39–42.

    PubMed  CAS  Google Scholar 

  • Dubuy, B., and Weissman, S. M. 1971. Nucleotide sequence of Pseudomonas fluorescens. 5. S RNA. J. Biol. Chem. 246: 747–761.

    PubMed  CAS  Google Scholar 

  • Dworkin, M. B., Rudensey, L. M., and Infante, A. A. 1977. Cytoplasmic nonpolysomal RNP particles in sea urchin embryos and their relationship to protein synthesis. Proc. Nat. Acad. Sci. USA. 74: 2231–2235.

    PubMed  CAS  Google Scholar 

  • Ebel, J. P., Geigé, R., Bonnet, J., Kern, D., Befort, N., Bollack, C., Fasiolo, F., Gangloff, J., and Dirheimer, G. 1973. Factors determining the specificity of the tRNA aminoacylation reaction. Biochimie. 55: 547–557.

    PubMed  CAS  Google Scholar 

  • Edmunds, M., Vaughan, M. H., and Nakazato, H. 1971. Poly(A) sequences in the hnRNA and rapidly-labelled polyribosomal RNA of HeLa cells. Proc. Nat. Acad. Sci. USA. 68: 1336–1340.

    Google Scholar 

  • Edström, J.-E., and Tanguay, R. 1974. Cytoplasmic RNAs with messenger characteristics in salivary gland cells of Chironomus tentans. J. Mol. Biol. 84: 569–583.

    Google Scholar 

  • Ehrenfeld, E., and Summers, D. 1972. Adenylate-rich sequences in vesicular stomatitis virus mRNA. J. Virol. 10: 683–688.

    PubMed  CAS  Google Scholar 

  • Ehresmann, C., Fellner, P., and Ebel, J. P. 1970. Nucleotide sequences of sections of 16 S rRNA. Nature. 227: 1321–1323.

    PubMed  CAS  Google Scholar 

  • Ehresmann, C., Steigler, P., Fellner, P., and Ebel, J. P. 1975. The determination of the primary structure of the 16 S ribosomal RNA of E. coli. III. Further studies. Biochimie. 57: 71 1748.

    Google Scholar 

  • Eisenstadt, J. M., and Brawerman, G. 1967. The role of the native subribosomal particles of E. coli. in polypeptide chain initiation. Proc. Nat. Acad. Sci. USA. 58: 1560–1565.

    PubMed  CAS  Google Scholar 

  • Erdmann, V. A. 1976. Structure and function of 5 S and 5.8 S RNA. Progr. Nucl. Acid Res. Mol. Biol. 18: 45–90.

    CAS  Google Scholar 

  • Erdmann, V. A., Sprinzl, M., and Pongs, O. 1973. The involvement of 5 S RNA in the binding of tRNAs to ribosomes. Biochem. Biophys. Res. Comm. 54: 942–948.

    PubMed  CAS  Google Scholar 

  • Eremenko, T., and Volpe, P. 1975. Polysome translational state during the cell cycle. Eur. J. Biochem. 52: 203–210.

    PubMed  CAS  Google Scholar 

  • Fakunding, J. L., Traut, R. R., and Hershey, J. W. B. 1973. Dependence of initiation factor IF-2 activity on proteins L7 and L12 from E. coli. 50 S ribosomes. J. Biol. Chem. 248: 8555–8559.

    PubMed  CAS  Google Scholar 

  • Fakunding, J. L., Trough, J. A., Traut, R. R., and Hershey, J. W. B. 1974. Purification and phosphorylation of initiation factor IF2. Meth. Enzym. 30: 24–31.

    PubMed  CAS  Google Scholar 

  • Favre, A., Morel, C., and Scherrer, K. 1975. The secondary structure and poly(A) content of globin mRNA as a pure RNA and in polyribosome-derived RNP complexes. Eur. J. Biochem. 57: 147–157.

    PubMed  CAS  Google Scholar 

  • Fellner, P., and Ebel, J. P. 1970. Observations on the primary structure of the 23 S rRNA from E. coli. Nature. 225: 1131–1132.

    CAS  Google Scholar 

  • Fellner, P., Ehresmann, C., and Ebel, J. P. 1970. Nucleotide sequences present within the 16 S rRNA of E. coli. Nature. 225: 26–29.

    CAS  Google Scholar 

  • Fellner, P., Ehresmann, C., and Ebel, J. P. 1972a. The determination of the primary structure of the 16 S rRNA of E. coli. I. Nucleotide sequence analysis of T1 and pancreatic RNase digestion products. Biochimie. 54: 853–900.

    PubMed  CAS  Google Scholar 

  • Fellner, P., Ehresmann, C., Stiegler, P., and Ebel, J. P. 1972b. Partial nucleotide sequence of 16 S rRNA from E. coli. Nature New Biol. 239: 1–5.

    CAS  Google Scholar 

  • Fellner, P., and Sanger, F. 1968. Sequence analysis of specific areas of the 16 S and 23 S rRNAs. Nature. 219: 236–238.

    PubMed  CAS  Google Scholar 

  • Fiers, W., Contreras, R., de Wachter, R., Haegeman, G., Merregaert, J., Min Jou, W., and Vandanberghe, A. 1971. Recent progress in the sequence determination of bacteriophage MS2 RNA. Biochimie. 53: 495–506.

    PubMed  CAS  Google Scholar 

  • Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Racymackers, A., Van der Bergh, A., Volckaert, G., and Ysebaert, M. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature. 260: 500–507.

    PubMed  CAS  Google Scholar 

  • Firtel, R. A., Jacobson, A., and Lodish, H. F. 1972. Isolation and hybridization kinetics of mRNA from Dictyostelium discoideum. Nature New Biol. 239: 225–228.

    CAS  Google Scholar 

  • Fischel, J. L., and Ebel, J. P. 1975. Sequence studies on the 5 S RNA of Proteus vulgaris: Comparison with the 5 S of E. coli. Biochimie. 57: 899–904.

    CAS  Google Scholar 

  • Fiser, I., Scheit, K. H., Stöffler, G., and Kuechler, E. 1974. Identification of protein S1 at the mRNA binding site of the E. coli. ribosome. Biochem. Biophys. Res. Comm. 60: 1112–1118.

    PubMed  CAS  Google Scholar 

  • Florendo, N. T. 1969. Ribosome substructure in intact mouse liver cells. J. Cell Biol. 41: 335–339.

    PubMed  CAS  Google Scholar 

  • Ford, P. J., and Southern, E. M. 1973. Different sequences for 5 S RNA in kidney cells and ovaries of Xenopus laevis. Nature New Biol. 241: 7–12.

    CAS  Google Scholar 

  • Forget, B. G., and Jordan, B. 1969.5 S RNA synthesized by E. coli. in presence of chloramphenicol. Science. 167: 382–384.

    Google Scholar 

  • Forget, B. G., and Weissman, S. M. 1967. Nucleotide sequence of KB cell 5 S RNA. Science. 158: 1695–1699.

    PubMed  CAS  Google Scholar 

  • Forget, B. G., and Weissman, S. M. 1969. The nucleotide sequence of ribosomal 5 S RNA from KB cells. J. Biol. Chem. 244: 3148–3165.

    PubMed  CAS  Google Scholar 

  • Forget, B. G., Housman, D., Benz, E. J., and McCaffrey, R. P. 1975. Synthesis of DNA complementary to separated human a and ß globin mRNAs. Proc. Nat. Acad. Sci. USA. 72: 984–988.

    PubMed  CAS  Google Scholar 

  • Fouquet, H., and Sauer, H. W. 1975. Variable redundancy in RNA transcripts isolated in S and G2 phase of the cell cycle of Physarum. Nature. 255: 253–255.

    CAS  Google Scholar 

  • Fox, G. E., and Woese, C. R. 1975. 5 S RNA secondary structure. Nature. 256: 505–507.

    Google Scholar 

  • Fromson, D., and Duchastel, A. 1975. Poly(A)-containing polyribosomal RNA in sea urchin embryos. Biochim. Biophys. Acta. 378: 394–404.

    PubMed  CAS  Google Scholar 

  • Fromson, D., and Verma, D. P. S. 1976. Translation of nonpolyadenylated mRNA of sea urchin embryos. Proc. Nat. Acad. Sci. USA. 73. :148–151.

    Google Scholar 

  • Fujisawa, T., and Eliceiri, G. L. 1975. Ribosomal proteins of hamster, mouse, and hybrid cells. Biochim. Biophys. Acta. 402: 238–243.

    PubMed  CAS  Google Scholar 

  • Funatsu, G., Yaguchi, M., and Wittmann-Liebold, B. 1977. Primary structure of protein S 12 from the small E. coli. ribosomal subunit. FEBS Lett. 73: 12–17.

    PubMed  CAS  Google Scholar 

  • Ganoza, M. C., and Fox, J. L. 1974. Isolation of a soluble factor needed for protein synthesis with various messenger ribonucleic acids other than poly(U). J. Biol. Chem. 249: 1037–1043.

    PubMed  CAS  Google Scholar 

  • Garen, A. 1968. Sense and nonsense in the genetic code. Science. 160: 149–159.

    PubMed  CAS  Google Scholar 

  • Garrett, R. A., Schulte, C., Stöffler, G., Gray, P., and Monier, R. 1974. The release of proteins and 5 S RNA during the unfolding of E. coli. ribosomes. FEBS Lett. 49: 1–4.

    PubMed  CAS  Google Scholar 

  • Garrett, R. A., and Wittmann, H. G. 1973. Structure of bacterial ribosomes. Adv. Prot. Chem. 27: 277–347.

    CAS  Google Scholar 

  • Gasior, E., and Moldave, K. 1972. Evidence for a soluble protein factor specific for the interaction between aminoacylated tRNAs and the 40 S subunit of mammalian ribosomes. J. Mol. Biol. 66: 391–402.

    PubMed  CAS  Google Scholar 

  • Georgiev, G. P., and Samarina, O. P. 1971. D-RNA containing RNP particles. Adv. Cell Biol. 2: 47–110.

    PubMed  CAS  Google Scholar 

  • Gesteland, R. F. 1966. Unfolding of E. coli. ribosomes by removal of magnesium. J. Mol. Biol. 18: 356–371.

    PubMed  CAS  Google Scholar 

  • Ghosh, H. P., and Khorana, H. G. 1967. On the role of ribosomal subunits in protein synthesis. Proc. Nat. Acad. Sci. USA. 58: 2455–2461.

    PubMed  CAS  Google Scholar 

  • Ghosh, H. P., Söll, D., and Khorana, H. G. 1967. Initiation of protein synthesis in vitro. as studied by using ribopolynucleotide with repeating nucleotide sequences as messengers. J. Mol. Biol. 25: 275–298.

    PubMed  CAS  Google Scholar 

  • Gillespie, D., Takemoto, K., Robert, M., and Gallo, R. C. 1973. Poly(A) in visna virus RNA. Science. 179: 1328–1330.

    PubMed  CAS  Google Scholar 

  • Ginzburg, I., and Zanier, A. 1975. Characterization of different conformational forms of 30 S ribosomal subunits in isolated and associated states. J. Mol. Biol. 93: 465–476.

    PubMed  CAS  Google Scholar 

  • Glazier, K., and Schlessinger, D. 1974. Magic spot metabolism in an E. coli. mutant temperature sensitive in elongation factor Ts. J. Bact. 117: 1195–1200.

    PubMed  CAS  Google Scholar 

  • Glick, B. R. 1977. The role of E. coli. ribosomal proteins L7 and L12 in peptide chain elongation. FEBS Lett. 73. :1–5.

    Google Scholar 

  • Glick, B. R., and Ganoza, M. C. 1976. Characterization and site of action of a soluble protein that stimulates peptide-bond synthesis. Eur. J. Biochem. 71: 483–491.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L., and Wittes, R. E. 1966. Genetic code: Aspects of organization. Science. 153: 420–424.

    PubMed  CAS  Google Scholar 

  • Goodman, H. M., Billeter, M. A., Hindley, J., and Weissmann, C. 1970. The nucleotide sequence at the 5’-terminus of the Qß RNA minus strand. Proc. Nat. Acad. Sci. USA. 67: 921–928.

    PubMed  CAS  Google Scholar 

  • Gordon, J., Schweiger, M., Krisko, I., and Williams, C. A. 1969. Specificity and evolutionary divergence of the antigenic structure of the polypeptide chain elongation factors. J. Bact. 100: 1–4.

    PubMed  CAS  Google Scholar 

  • Gormly, J. R., Yang, C. H., and Horowitz, J. 1971. Further studies on ribosome unfolding. Biochim. Biophys. Acta. 247: 80–90.

    PubMed  CAS  Google Scholar 

  • Gorski, J., Morrison, M. R., Merkel, C. G., and Lingrel, J. B. 1975. Poly(A) size class distribution in globin mRNAs as a function of time. Nature. 253: 749–751.

    PubMed  CAS  Google Scholar 

  • Gottlieb, M., Lubsen, N. H., and Davis, B. D. 1974. Ribosome dissociation factors. Methods Enzymol. 30: 87–94.

    PubMed  CAS  Google Scholar 

  • Gould, R. M., Thornton, M. P., Liepkalns, V., and Lennarz, W. J. 1968. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidyiglycerol synthesis. J. Biol. Chem. 243: 3096–3104.

    Google Scholar 

  • Gralla, J., and De Lisi, C. 1974. mRNA is expected to form stable secondary structures. Nature. 248: 330–332.

    Google Scholar 

  • Gralla, J., Steitz, J. A., and Crothers, D. M. 1974. Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature. 248: 204–208.

    PubMed  CAS  Google Scholar 

  • Grasmuck, H., Nolan, R. D., and Drews, J. 1974. Elongation factor 1 from ascites tumor cells. Eur. J. Biochem. 48: 485–493.

    Google Scholar 

  • Grasmuk, H., Nolan, R. D., and Drews, J. 1976. A new concept of the function of EF-1 in peptide chain elongation. Eur. J. Biochem. 71: 271–279.

    PubMed  CAS  Google Scholar 

  • Gray, M. W. 1974. The presence of 02 -methylpseudouridine in the 18 S + 26 S ribosomal ribonucleates of wheat embryo. Biochemistry. 13: 5453–5463.

    PubMed  CAS  Google Scholar 

  • Grayson, S., and Berry, S. J. 1973. Estimation of the half-life of a secretory protein message. Science. 180: 1071–1072.

    PubMed  CAS  Google Scholar 

  • Greenberg, J. R. 1975. Messenger RNA metabolism of animal cells. J. Cell Biol. 64: 269–288.

    PubMed  CAS  Google Scholar 

  • Greenberg, J. R. 1976. Isolation of L-cell mRNA which lacks poly(A). Biochemistry. 15: 3516–3552.

    PubMed  CAS  Google Scholar 

  • Greenberg, J. R., and Perry, R. P. 1972. Relative occurrence of poly(A) sequences in messenger and hnRNA of L cells as determined by poly(U)-hydroxylapatite chromatography. J. Mol. Biol. 72: 91–98.

    PubMed  CAS  Google Scholar 

  • Grierson, D. 1974. Characterization of RNA components from leaves of Phaseolus aureus. Eur. J. Biochem. 44: 509–515.

    CAS  Google Scholar 

  • Gross, P. R., and Cousineau, G. H. 1963. Effects of actinomyin D on macromolecule synthesis and early development in sea urchin eggs. Biochem. Biophys. Res. Comm. 10: 321–326.

    PubMed  CAS  Google Scholar 

  • Groves, W. E., and Kempner, E. S. 1967. Amino acid coding in Sarcina lutea. and Saccharomyces cerevisiae. Science. 156: 387–390.

    CAS  Google Scholar 

  • Grozdanovic, J., and Hradec, J. 1975. Different binding sites of poly(A)-containing and poly(A)free fractions of nuclear ribonucleic acid to ribosomes from rat liver. Biochem. Biophys. Acta. 402: 69–82.

    PubMed  CAS  Google Scholar 

  • Gualerzi, C., Janda, H. G., Passow, H., and Stöffler, G. 1974. Studies on the protein moiety of plant ribosomes. J. Biol. Chem. 249: 3347–3355.

    PubMed  CAS  Google Scholar 

  • Gualerzi, C., Pon, C. L., and Kaji, A. 1971. Initiation factor dependent release of aminoacyltRNAs from complexes of 30 S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem. Biophys. Res. Comm. 45: 1312–1319.

    PubMed  CAS  Google Scholar 

  • Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. 1971. Use of frog eggs and oocytes for the study of mRNA and its translation in living cells. Nature. 233: 177–182.

    PubMed  CAS  Google Scholar 

  • Haenni, A. L., and Lucas-Lenard, J. 1970. Function of the elongation factors T and G. In: Ochoa, S., C. F. Heredin, C. Asensio, and D. Nachmansohn, eds., Macromolecules: Biosynthesis and Function., New York, Academic Press, p. 97–108.

    Google Scholar 

  • Haguenau, F. 1958. The ergastoplasm: Its history, ultrastructure and biochemistry. Internat. Rev. Cytol. 7: 425–483.

    CAS  Google Scholar 

  • Haines, M. E., Carey, N. H., and Palmiter, R. D. 1974. Purification and properties of ovalbumin mRNA. Eur. J. Biochem. 43: 549–560.

    PubMed  CAS  Google Scholar 

  • Hall, N. D., and Amstein, H. R. V. 1973. Specificity of reticulocyte initiation factors for the translation of globin mRNA. Biochem. Biophys. Res. Comm. 54: 1489–1497.

    PubMed  CAS  Google Scholar 

  • Hamel, E., and Cashel, M. 1973. Role of guanine nucleotides in protein synthesis. Proc. Nat. Acad. Sci. USA. 70: 3250–3254.

    PubMed  CAS  Google Scholar 

  • Hampel, A., and Enger, M. D. 1973. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J. Mol. Biol. 79: 285–293.

    PubMed  CAS  Google Scholar 

  • Hardy, S. J. S., Kurland, C. G., Voynow, P., and Mora, G. 1969. The ribosomal proteins of E. coli. Biochemistry. 8: 2897–2905.

    CAS  Google Scholar 

  • Hasselkorn, R., and Rothman-Denes, L. B. 1973. Protein synthesis. Ann. Rev. Biochem. 42: 397–438.

    Google Scholar 

  • Hatfield, D. 1972. Recognition of nonsense codons in mammalian cells. Proc. Nat. Acad. Sci. USA. 69: 3014–3018.

    PubMed  CAS  Google Scholar 

  • Hatlen, L., and Attardi, G. 1971. Proportion of the HeLa cell genome complementary to tRNA and 5 S RNA. J. Mol. Biol. 56: 535–554.

    PubMed  CAS  Google Scholar 

  • Hattman, S., and Hofschneider, P. H. 1968. Influence of T4 on the formation of RNA phage-specific polyribosomes and polymerase. J. Mol. Biol. 35: 513–522.

    PubMed  CAS  Google Scholar 

  • Hawley, D. A., Miller, M. J., Slobin, L. I., and Wahba, A. J. 1974. The mechanism of action of initiation factor 3 in protein synthesis. Biochem. Biophys. Res. Comm. 61: 329–337.

    PubMed  CAS  Google Scholar 

  • Held, W. A., Getle, W. R., and Nomura, M. 1974. Role of 16 S ribosomal RNA and the 30 S ribosomal protein S12 in the initiation of natural mRNA translation. Biochemistry. 13: 2115–2122.

    PubMed  CAS  Google Scholar 

  • Hellerman, J. G., and Shafritz, D. A. 1975. Initiation of poly(A) and mRNA with eukaryotic initiator Met tRNAf binding factor. Proc. Nat. Acad. Sci. USA. 72: 1021–1025.

    PubMed  CAS  Google Scholar 

  • Hemminki, K. 1974. Poly(A) in RNA extracted by thermal phenol fractionation from chick embryo brain and liver. Biochim. Biophys. Acta. 340: 262–268.

    PubMed  CAS  Google Scholar 

  • Henriksen, O., Robinson, E. A., and Maxwell, E. S. 1975a. Interaction of guanosine nucleotides with EF-2. I. Equilibrium dialysis studies. J. Biol. Chem. 250: 720–724.

    PubMed  CAS  Google Scholar 

  • Henriksen, O., Robinson, E. A., and Maxwell, E. S. 1975b. Interaction of guanosine nucleotides with EF-2. II. Effects of ribosomes and magnesium ions on guanosine diphosphate and guano-sine triphosphate binding to the enzyme. J. Biol. Chem. 250: 725–730.

    PubMed  CAS  Google Scholar 

  • Henshaw, E. C., Guiney, D. G., and Hirsch, C. A. 1973. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4367–4376.

    PubMed  CAS  Google Scholar 

  • Herr, W., and Noller, H. F. 1975. A fragment of 23 S RNA containing a nucleotide sequence complementary to a region of 5 S RNA. FEBS Lett. 53: 248–252.

    PubMed  CAS  Google Scholar 

  • Herrington, M. D., and Hawtrey, A. O. 1971. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland. Biochem. J. 121: 279–285.

    PubMed  CAS  Google Scholar 

  • Hershey, A. D., Dixon, J., and Chase, M. 1953. Nucleic acid economy in bacteria infected with bacteriophage T2. J. Gen. Physiol. 36: 777–789.

    PubMed  CAS  Google Scholar 

  • Hershey, J. W. B., Dewey, K. F., and Thach, R. E. 1969. Purification and properties of IF-1. Nature. 222: 944–947.

    PubMed  CAS  Google Scholar 

  • Highland, J. H., Bodley, J. W., Gordon, J., Hasenbank, R., and Stöffler, G. 1973. Identity of the ribosomal proteins involved in the interaction with EF-G. Proc. Nat. Acad. Sci. USA. 70: 147–150.

    PubMed  CAS  Google Scholar 

  • Highland, J. H., Ochsner, E., Gordon, J., Hasenbank, R., and Stöffler, G. 1974. Inhibition of phenylalanyl-tRNA binding and EF-Tu-dependent GTP hydrolysis by antibodies specific for several ribosomal proteins. J. Mol. Biol. 86: 175–178.

    PubMed  CAS  Google Scholar 

  • Hindley, J., and Page, S. M. 1972. Nucleotide sequence of yeast 5 S rRNA. FEBS Lett. 26: 157–160.

    PubMed  CAS  Google Scholar 

  • Hindley, J., and Staples, D. H. 1969. Sequence of a ribosome binding site in bacteriophage Q/3-RNA. Nature. 224: 964–967.

    PubMed  CAS  Google Scholar 

  • Hirashima, A., Wang, S., and Inouye, M. 1974. Cell-free synthesis of a specific lipoprotein of the E. coli. outer membrane directed by purified mRNA. Proc. Nat. Acad. Sci. USA. 71: 4149–4153.

    PubMed  CAS  Google Scholar 

  • Hirsch, C. A., Cox, M. A., von Venrooij, W. J., and Henshaw, E. C. 1973. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4377–4385.

    PubMed  CAS  Google Scholar 

  • Hitz, H., Schäfer, D., and Wittmann-Liebold, B. 1975. Primary structure of ribosomal protein S6 from the wild type and a mutant of E. coli. FEBS Lett. 56: 259–262.

    CAS  Google Scholar 

  • Hodge, L. D., Robbins, E., and Scharff, M. D. 1969. Persistence of mRNA through mitosis in HeLa cells. J. Cell Biol. 40: 497–507.

    PubMed  CAS  Google Scholar 

  • Holland, M. J., Hager, G. L., and Rutter, W. J. 1977. Characterization of purified poly(A)-containing mRNA from S. cerevisiae. Biochemistry. 16: 8–16.

    CAS  Google Scholar 

  • Houdebine, L. M. 1976. Absence of poly(A) in a large part of newly synthesized casein mRNAs. FEBS Leu. 66: 110–113.

    CAS  Google Scholar 

  • Howard, G. A., and Herbert, E. 1975. Ribosomal subunit localization of hemoglobin mRNA. Eur. J. Biochem. 54: 75–80.

    PubMed  CAS  Google Scholar 

  • Howard, G. A., Traugh, J. A., Croser, E. A., and Traut, R. A. 1975. Ribosomal proteins from rabbit reticulocytes. J. Mol. Biol. 93: 391–404.

    PubMed  CAS  Google Scholar 

  • Hsu, W. T., and Weiss, S. B. 1969. Selective translation of T4 template RNA by ribosomes from T4-infected E. coli. Proc. Nat. Acad. Sci. USA. 64: 345–351.

    CAS  Google Scholar 

  • Huynh-Van-Tan, Delaunay, J., and Schapira, G. 1971. Eukaryotic ribosomal proteins. FEBS Lett. 17: 163–167.

    Google Scholar 

  • Iatrou, K., and Dixon, G. H. 1977. The distribution of poly(A)+ and poly(A)- protamine mRNA sequences in the developing trout testis. Cell. 10: 433–441.

    PubMed  CAS  Google Scholar 

  • Igarashi, K., Sugawara, K., Izumi, I., Nagayama, C., and Hirose, S. 1974. Effect of polyamines on polyphenylalanine synthesis by E. coli. and rat liver ribosomes. Eur. J. Biochem. 48: 495–502.

    PubMed  CAS  Google Scholar 

  • Ilan, Jo. 1969. The role of tRNA in translational control of specific mRNA during insect metamorphosis. Cold Spring Harb. Symp. Quant. Biol. 34: 787–791.

    PubMed  CAS  Google Scholar 

  • Ilan, Jo. and Ilan, Ju. 1973a. Sequence homology at the 5’-termini of insect mRNA. Proc. Nat. Acad. Sci. USA. 70: 1355–1358.

    PubMed  CAS  Google Scholar 

  • Ilan, Ju., and Ilan, Jo. 1973b. An mRNA bound initiation factor and its role in translation of natural message. Nature New Biol. 241: 176–180.

    PubMed  CAS  Google Scholar 

  • Ilan, Jo., Ilan, Ju., and Quastel, J. H. 1966. Effects of actinomysin D on nucleic acid metabolism and protein biosynthesis during metamorphosis of Tenebrio molitor. L. Biochem. J. 100: 441–447.

    PubMed  CAS  Google Scholar 

  • Inoue-Yokosawa, N., Ishikawa, C., and Kagiro, Y. 1974. The role of guanosine triphosphate in translocation reaction catalyzed by EF-G. J. Biol. Chem. 249: 4321–4323.

    PubMed  CAS  Google Scholar 

  • Ishikura, H., Yamada, Y., and Nishimura, S. 1971. Structure of serine tRNA from E. coli. and purification of serine tRNAs with different codon responses. Biochim. Biophys. Acta. 228: 471–481.

    PubMed  CAS  Google Scholar 

  • Ishizuka, S., Kawakami, M., Ejiri, S., and Shimura, K. 1974. The initiator amino acid in silk fibroin biosynthesis. FEBS Lett. 47: 318–322.

    PubMed  CAS  Google Scholar 

  • Isono, K., and Isono, S. 1976. Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc. Nat. Acad. Sci. USA. 73: 767–770.

    CAS  Google Scholar 

  • Isono, S., and Isono, K. 1975. Purification and characterization of 30 S ribosomal proteins from Bacillus stearothermophilus. Eur. J. Biochem. 50: 483–488.

    CAS  Google Scholar 

  • Iwasaki, K., Motoyoshi, K., Nagata, S. and Kaziro, Y. 1976. Purification and properties of a new polypeptide chain elongation factor, EF-1$, from pig liver. J. Biol. Chem. 251: 1843–1845.

    PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318–356.

    PubMed  CAS  Google Scholar 

  • Jacobson, A., Firtel, R. A., and Lodish, H. F. 1974. Synthesis of messenger and ribosomal RNA precursors in isolated nuclei of the cellular slime mold Dictyostelium discoideum. J. Mol. Biol. 82: 213–230.

    CAS  Google Scholar 

  • Jantzen, H. 1974. Polyadenylsäure-enthaltende RNA und Genaklivitätsmuster während der Entwicklung von Acanthamoeba castellanü. Biochim. Biophys. Acta. 374: 38–51.

    CAS  Google Scholar 

  • Jay, G., and Kaempfer, R. 1975. Initiation of protein synthesis. Binding of mRNA. J. Biol. Chem. 250: 5742–5748.

    PubMed  CAS  Google Scholar 

  • Jeffery, W. R., and Brawerman, G. 1974. Characterization of the steady-state population of mes- senger RNA and its poly(A) segment in mammalian cells. Biochemistry. 13: 4633–4637.

    PubMed  CAS  Google Scholar 

  • Jerez, C., Sandoval, A., Allende, J., Henes, C., and Ofengand, J. 1969. Specificity of the interaction of aminoacyl RNA with a protein-GTP complex from wheat embryo. Biochemistry. 8: 3006–3014.

    PubMed  CAS  Google Scholar 

  • Johnson, T. C., and Luttges, M. W. 1966. The effects of maturation on in vitro. protein synthesis by mouse brain cells. J. Neurochem. 13: 545–552.

    PubMed  CAS  Google Scholar 

  • Johnston, R. E., and Bose, H. R. 1972. An adenylate-rich segment in the virion RNA of Sindbis virus. Biochem. Biophys. Res. Comm. 46: 712–718.

    PubMed  CAS  Google Scholar 

  • Jordan, B. R., and Galling, G. 1973. Nucleotide sequence of Chlorella. cytoplasmic 5 S RNA. FEBS Lett. 37: 333–334.

    PubMed  CAS  Google Scholar 

  • Jordan, B. R., Galling, G., and Jourdan, R. 1974. Sequence and conformation of 5 S RNA from Chlorella. cytoplasmic ribosomes: Comparison with other 5 S RNA molecules. J. Mol. Biol. 87: 205–225.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H. 1969. Recent advances in studies of evolutionary relationships between proteins and nucleic acids. Space Life Sci. 1: 469–494.

    PubMed  CAS  Google Scholar 

  • Kabat, D. 1975. Potentiation of hemoglobin mRNA. J. Biol. Chem. 250: 6085–6092.

    PubMed  CAS  Google Scholar 

  • Kaempfer, R. 1968. Ribosome subunit exchange during protein synthesis. Proc. Nat. Acad. Sci. USA. 61: 106–113.

    PubMed  CAS  Google Scholar 

  • Kaempfer, R. 1969. Ribosome subunit exchange in the cytoplasm of a eucaryote. Nature. 222: 950–953.

    PubMed  CAS  Google Scholar 

  • Kaempfer, R., and Meselson, M. 1968. Permanent association of 5 S RNA molecules with 50 S ribosomal subunits in growing bacteria. J. Mol. Biol. 34: 703–708.

    PubMed  CAS  Google Scholar 

  • Kaempfer, R., Meselson, M., and Raskas, H. 1968. Cyclic dissociation into stable subunits and reformation of ribosomes during bacterial growth. J. Mol. Biol. 31: 277–289.

    PubMed  CAS  Google Scholar 

  • Kaji, A., Kaji, H., and Novelli, G. D. 1965. Soluble amino acid-incorporating system. J. Biol. Chem. 240: 1185–1191.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt, E., Kahan, L., and Nomura, M. 1974. In vitro synthesis of ribosomal proteins directed by E. coli DNA. Proc. Nat. Acad. Sci. USA. 7./:446–450.

    Google Scholar 

  • Kates, J. 1970. Transcription of the vaccinia virus genome and the occurrence of poly(A) sequences in mRNA. Cold Spring Harbor Symp. Quant. Biol. 35: 743–752.

    CAS  Google Scholar 

  • Kawakita, M., Arai, K.-I., and Kaziro, Y. 1974. Interactions between EF-Tu-guanosine triphosphate and ribosomes and the role of ribosome-bound tRNA in guanosine triphosphate reaction. J. Biochem. 76: 801–809.

    PubMed  CAS  Google Scholar 

  • Kay, A., Sander, G., and Grunberg-Manago, M. 1973. Effect of ribosomal protein L12 upon initiation factor IF-2 activities. Biochem. Biophys. Res. Comm. 51: 979–986.

    PubMed  CAS  Google Scholar 

  • Kaziro, Y., Inoue-Yokosawa, N., and Kawakita, M. 1972. Studies on polypeptide EF-G from E. coli. J. Biochem. 72: 853–863.

    CAS  Google Scholar 

  • Kemp, D. J. 1975. Unique and repetitive sequences in multiple genes for feather keratin. Nature. 254: 573–575.

    PubMed  CAS  Google Scholar 

  • Kim, S.-H., and Rich, A. 1969. Crystalline transfer RNA: The three-dimensional Patterson function of 12-Angstrom resolution. Science. 166: 1621–1624.

    PubMed  CAS  Google Scholar 

  • Kim, W. S. 1969. N-formylseryl-tRNA. Science. 163: 947–949.

    PubMed  CAS  Google Scholar 

  • Kimura, M., and Ohta, T. 1973. Eukaryotes-prokaryotes divergence estimated by 5 S ribosomal RNA sequences. Nature New Biol. 243: 199–200.

    PubMed  CAS  Google Scholar 

  • Kischa, K., Möller, W., and Stöffler, G. 1971. Reconstitution of a GTPase activity by a 50 S ribosomal protein from E. coli. Nature New Biol. 233: 62–63.

    CAS  Google Scholar 

  • Kiselev, N. A., Stel’mashchuk, V. Y., Lerman, M. I., and Abakumova, O. Y. 1974. On the structure of liver ribosomes. J. Mol. Biol. 86: 577–586.

    PubMed  CAS  Google Scholar 

  • Kiss, A., Sain, B., and Venetianer, P. 1977. The number of rRNA genes in E. coli. FEBS Lett. 79: 77–79.

    CAS  Google Scholar 

  • Klagsbrun, M. 1973. An evolutionary study of the methylation of tRNA and rRNA in prokaryote and eukaryote organisms. J. Biol. Chem. 248: 2612–2620.

    PubMed  CAS  Google Scholar 

  • Klein, W. H., Murphy, W., Attardi, G., Britten, R. J., and Davidson, E. H. 1974. Distribution of repetitive and nonrepetitive sequence transcripts in HeLa mRNA. Proc. Nat. Acad. Sci. USA. 71: 1785–1789.

    PubMed  CAS  Google Scholar 

  • Knight, E. J. R., and Darnell, J. E. 1967. Distribution of 5 S RNA in HeLa cells. J. Mol. Biol. 28: 491–502.

    PubMed  CAS  Google Scholar 

  • Kohler, R. E., Ron, E. Z., and Davis, B. D. 1968. Significance of the free 70S ribosomes in E. coli. extracts. J. Mol. Biol. 36: 71–82.

    PubMed  CAS  Google Scholar 

  • Kolakofsky, D., Dewey, K., and Thack, R. E. 1969. Purification and properties of initiation factor f2. Nature. 223: 694–697.

    PubMed  CAS  Google Scholar 

  • Koser, R. B., and Collier, J. R. 1971. The molecular weight and thermolability of Ilyanassa. •rRNA. Biochim. Biophys. Acta. 254: 272–277.

    PubMed  CAS  Google Scholar 

  • Koteliansky, V. E., Domogatsky, S. P., Gudkov, A. T., and Spirin, A. S. 1977. Elongation factor-dependent reactions on ribosomes deprived of proteins L7 and L12. FEBS Lett. 73: 6–11.

    PubMed  CAS  Google Scholar 

  • Krauss, S. W., and Leder, P. 1975. Turnover of protein synthetic elongation and initiation factors in E. coli. J. Biol. Chem. 250: 4714–4717.

    CAS  Google Scholar 

  • Krystosek, A., Cawthon, M. L., and Kabat, D. 1975. Improved methods for purification and assay of eukaryotic mRNAs and ribosomes. J. Biol. Chem. 250: 6077–6084.

    PubMed  CAS  Google Scholar 

  • Küntzel, H. 1969. Proteins of mitochondria) and cytoplasmic ribosomes. Nature. 222: 142–146.

    PubMed  Google Scholar 

  • Kurland, C. G. 1970. Ribosome structure and function emergent. Science. 169: 1171–1177.

    PubMed  CAS  Google Scholar 

  • Kwan, S. W., and Brawerman, G. 1972. A particle associated with the poly(A) segment in mammalian mRNA. Proc. Nat. Acad. Sci. USA. 69: 3247–3250.

    PubMed  CAS  Google Scholar 

  • Lai, M. M. C., and Duesberg, P. H. 1972. Adenylic acid-rich sequence in RNA of Rous sarcoma virus and Rausche mouse leukaemia virus. Nature. 235: 383–386.

    PubMed  CAS  Google Scholar 

  • Lake, J. A. 1976. Ribosome structure determined by electron microscopy of E. coli. small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105: 131–159.

    PubMed  CAS  Google Scholar 

  • Lanzani, G. A., Bollini, R., and Soffientini, A. N. 1974. Heterogeneity of EF-1 from wheat embryos. Biochim. Biophys. Acta. 335: 275–283.

    Google Scholar 

  • Lawrence, F. 1973. Effect of adenosine on methionyl-tRNA synthetase. Eur. J. Biochem. 40: 493–500.

    PubMed  CAS  Google Scholar 

  • Lawrence, F., Blanquet, S., Poiret, M., Robert-Gero, M., and Waller, J.-P. 1973. The mechanism of action of methionyl-tRNA synthetase. Eur. J. Biochem. 36: 234–243.

    PubMed  CAS  Google Scholar 

  • Lawrence, F., Shire, D. J., and Waller, J.-P. 1974. The effect of adenosine analogues on ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Eur. J. Biochem. 41: 73–81.

    PubMed  CAS  Google Scholar 

  • Laycock, A. G., and Hunt, J. A. 1969. Synthesis of rabbit globin by a bacterial cell-free system. Nature. 221: 1118–1122.

    PubMed  CAS  Google Scholar 

  • Leaver, C. J., and Ingle, J. 1971. The molecular integrity of chloroplast rRNA. Biochem. J. 123: 235–243.

    PubMed  CAS  Google Scholar 

  • LeBleu, B., Nudel, U., Falcoff, E., Prives, C., and Revel, M. 1972. A comparison of the translation of Mengo virus RNA and globin mRNA in Krebs ascites cell-free extracts. FEBS Lett. 25: 97–103.

    Google Scholar 

  • Lebleu, G., Marbaix, G., Huez, G., Timmerman, J., Burny, A., and Chantrenne, N. 1971. Characterization of the mRNP released from reticulocyte polyribosomes by EDTA treatment. Eur. J. Biochem. 19: 264–269.

    PubMed  CAS  Google Scholar 

  • Leder, P. 1973. The elongation factors in protein synthesis. Adv. Prot. Chem. 27: 213–240.

    CAS  Google Scholar 

  • Lee-Huang, S., and Ochoa, S. 1973. Purification of two messenger-discriminating species of IF-3 from E. coli. Methods Enzymol. 30: 45–53.

    Google Scholar 

  • Lee-Huang, S., and Ochoa, S. 1974a. Preparation and properties of crystalline initiation factor 1 (IFI) from Escherichia coli. Methods Enzymol. 30: 31–39.

    CAS  Google Scholar 

  • Lee-Huang, S., and Ochoa, S. 1974b. Pruification of two messenger-discriminating species of initiation factor 3 (IF3) from E. coli. Methods Enzymol. 30: 45–53.

    CAS  Google Scholar 

  • Leffler, S. and Szer, W. 1974a. Purification and properties of initiation factor IF-3 from Caulobacter crescentus. J. Biol. Chem. 249: 1458–1464.

    CAS  Google Scholar 

  • Leffler, S., and Szer, W. 1974b. Polypeptide chain initiation in Caulobacter crescentus. without initiation factor IF-1. J. Biol. Chem. 249: 1465–1468.

    PubMed  CAS  Google Scholar 

  • Leibowitz, M. J., and Soffer, R. L. 1969. A soluble enzyme from E. coli. which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem. Biophys. Res. Comm. 36: 47–53.

    PubMed  CAS  Google Scholar 

  • Leighton, T. 1974. Further studies on the stability of sporulation mRNA in B. subtilis. J. Biol. Chem. 249: 7808–7812.

    CAS  Google Scholar 

  • Levin, D. H., Kyner, D., and Acs, G. 1973. Protein initiation in eukaryotes. Proc. Nat. Acad. Sci. USA. 70: 41–45.

    PubMed  CAS  Google Scholar 

  • Levinthal, C., Hosoda, J., and Shub, D. 1967. The control of protein synthesis after phage infection. In: Colter, S. J., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 71–87.

    Google Scholar 

  • Levinthal, C., Keywan, A., and Higa, A. 1962. Messenger RNA turnover and protein synthesis in B. subtilis. inhibited by actinomycin D. Proc. Nat. Acad. Sci. USA. 48: 1631–1638.

    PubMed  CAS  Google Scholar 

  • Levitt, M. 1969. Detailed molecular model for tRNA. Nature. 224: 759–763.

    PubMed  CAS  Google Scholar 

  • Lewin, B. M. 1970. The Molecular Basis of Gene Expression. New York, Wiley-Interscience.

    Google Scholar 

  • Liautard, J. P., Setyono, B., Spindler, E., and Köhler, K. 1976. Comparison of proteins bound to the different functional classes of mRNA. Biochim. Biophys. Acta. 425: 373–383.

    PubMed  CAS  Google Scholar 

  • Lim, L., and Canellakis, E. S. 1970. Adenine-rich polymer associated with rabbit reticulocyte mRNA. Nature. 227: 710–712.

    PubMed  CAS  Google Scholar 

  • Lim, L., Canellakis, Z. N. and Canellakis, E. S. 1970. Metabolism of naturally occurring homo-polymers. Biochim. Biophys. Acta. 209: 128–138.

    PubMed  CAS  Google Scholar 

  • Lin, J. Y., Tsung, C. M., and Fraenkel-Conrat, J. 1967. The coat protein of the RNA bacteriophage MS2. J. Mol. Biol. 24: 1–14.

    CAS  Google Scholar 

  • Lipmann, F. 1969. Polypeptide chain elongation in protein biosynthesis. Science. 164: 1024–1031.

    PubMed  CAS  Google Scholar 

  • Loeb, J. N., Howell, R. R., and Tomkins, G. M. 1965. Turnover of rRNA in rat liver. Science. 149: 1093–1095.

    PubMed  CAS  Google Scholar 

  • Loening, U. E. 1968. Molecular weights of rRNA in relation to evolution. J. Mol. Biol. 38: 355–365.

    PubMed  CAS  Google Scholar 

  • Loening, U. E., Grierson, D., Rogers, M. E., and Sartirana, M. L. 1972. Properties of rRNA precursor. In: Cox, R. A., and A. A. Hadjiolov, eds., Functional Units in Protein Biosynthesis., New York, Academic Press, p. 395–405.

    Google Scholar 

  • Loftfield, R. B. 1972. The mechanism of aminoacylation of tRNA. Progr. Nucl. Acid. Res. Mol. Biol. 12: 87–128.

    CAS  Google Scholar 

  • Lucas-Lenard, J., and Lipmann, F. 1966. Separation of three microbial amino acid polymerization factors. Proc. Nat. Acad. Sci. USA. 55: 1562–1566.

    PubMed  CAS  Google Scholar 

  • Lucas-Lenard, J., and Lipmann, F. 1971. Protein biosynthesis. Ann. Rev. Biochem. 40: 409–448.

    PubMed  CAS  Google Scholar 

  • Lukanidin, E. M., Zalmanzon, E. S., Komaromi, L., Samarina, O. P., and Georgiev, G. P. 1972. Structure and function of informofers. Nature New Biol. 238: 193–197.

    PubMed  CAS  Google Scholar 

  • Maclnnes, J. W. 1972. Differences between ribosomal subunits from brain and those from other tissues. J. Mol. Biol. 65: 157–162.

    Google Scholar 

  • Maclnnes, J. W. 1973. Mammalian brain ribosomes are behaviourly and structurally heterogeneous. Nature New Biol. 241: 244–246.

    Google Scholar 

  • MacLeod, M. C. 1975. Comparisons of the properties of cytoplasmic poly(A)-containing RNA from polysomal and nonpolysomal fractions of murine myeloma cells. Biochemistry. 14: 4011–4018.

    CAS  Google Scholar 

  • Maden, B. E. H., Forbes, J., de Jong, P., and Klootwijk, J. 1975. Presence of a hypermodified nucleotide in HeLa cell 18 S and Saccharomyces carlsbergensis. 17. S ribosomal RNAs. FEBS Lett. 59: 60–63.

    PubMed  CAS  Google Scholar 

  • Madison, J. T. 1968. Primary structure of RNA. Ann. Rev. Biochem. 37: 131–148.

    PubMed  CAS  Google Scholar 

  • Maelicke, A., Engel, G., Cramer, F., and Staehelin, M. 1974. ATP-induced specificity of the binding of serine tRNAs from rat liver to seryl-tRNA sythetase from yeast. Eur. J. Biochem. 42: 311–314.

    PubMed  CAS  Google Scholar 

  • Mainwaring, W. I. P., Wilce, P. A., and Smith, A. E. 1974. Studies on the form and synthesis of mRNA in the rat ventral prostate gland, including its tissue-specific stimulation by androgens. Biochem. J. 137: 513–524.

    PubMed  CAS  Google Scholar 

  • Maizels, N. 1974. E. coli. lactose operon ribosome binding site. Nature. 249: 647–649.

    CAS  Google Scholar 

  • Majumdar, A., Bose, K. K., and Gupta, N. K. 1976. Specific binding of E. coli. chain IF-2 to fMet-tRNA r r. J. Biol. Chem. 251: 137–140.

    PubMed  CAS  Google Scholar 

  • Mangiarotti, G., and Schlessinger, D. 1966. Extraction of polyribosomes and ribosomal subunits from fragile growing E. coli. J. Mol. Biol. 20: 123–143.

    CAS  Google Scholar 

  • Mangiarotti, G., and Schlessinger, D. 1967. Formation and lifetime of mRNA molecules, ribosome subunit couples and polyribosomes. J. Mol. Biol. 29: 355–418.

    Google Scholar 

  • Mansbridge, J. N., Crossley, J. A., Lanyon, W. G., and Williamson, R. 1974. The poly(A) sequence of mouse globin mRNA. Eur. J. Biochem. 44: 261–269.

    PubMed  CAS  Google Scholar 

  • Marcus, A., Seal, S. N., and Weeks, D. P. 1974. Protein chain initiation in wheat embryo. Methods Enzymol. 30: 94–101.

    PubMed  CAS  Google Scholar 

  • Marshall, R. E. 1967. Fine structure of RNA codewords recognized by bacterial, amphibian, and mammalian transfer RNA. Science. 155: 820–826.

    PubMed  CAS  Google Scholar 

  • Mathews, M. B., Osburn, M., Berns, A. J. M., and Bloemandal, H. 1972a. Translation of two mRNAs from lens in a cell-free system from Krebs II ascites cells. Nature New Biol. 236: 5–7.

    PubMed  CAS  Google Scholar 

  • Mathews, M. B., Pragnell, I. B., Osburn, M., and Arnstein, H. R. V. 1972b. Stimulation by reticulocyte initiation factors of protein synthesis in a cell-free system from Krebs II ascites cells. Biochim. Biophys. Acta. 287: 113–123.

    PubMed  CAS  Google Scholar 

  • Maugh, T. H. 1975. Ribosomes (II): A complicated structure begins to emerge. Science. 190: 258–260.

    Google Scholar 

  • Mazumder, R. 1971. Studies on polypeptide chain initiation factors F, and F2. FEBS Lett. 18: 64–66.

    PubMed  CAS  Google Scholar 

  • Mazumder, R. 1972. IF-2-dependent ribosomal binding ofN-formylmethionyl-tRNA without added GTP. Proc. Nat. Acad. Sci. USA. 69: 2770–2773.

    PubMed  CAS  Google Scholar 

  • McConkey, E. H., and Hauber, E. J. 1975. Evidence for heterogeneity of ribosomes within the HeLa cell. J. Biol. Chem. 250: 1311–1318.

    PubMed  CAS  Google Scholar 

  • McCorquodale, D. J., Oleson, A. E., and Buchanan, J. M. 1967. Control of virus-induced enzyme synthesis in bacteria. In: Colter, S. J., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 31–54.

    Google Scholar 

  • McCroskey, R. P., Zasloff, M., and Ochoa, S. 1972. Polypeptide chain initiation and stepwise elongation with Artemia. ribosomes and factors. Proc. Nat. Acad. Sci. USA. 69: 2451–2455.

    PubMed  CAS  Google Scholar 

  • McKnight, G. S., and Schimke, R. T. 1974. Ovalbumin mRNA. Proc. Nat. Acad. Sci. USA. 71: 4327–4331.

    PubMed  CAS  Google Scholar 

  • McLaughlin, C. S., Warner, J. R., Edmunds, M., Nakagato, H., and Vaughan, M. H. 1973. Poly(A) sequences in yeast mRNA. J. Biol. Chem. 248: 1466–1471.

    PubMed  CAS  Google Scholar 

  • McNeil, R. G., and McLaughlin, C. S. 1974. Differential biological activity of three species of methionyl-tRNA in yeast. Biochim. Biophys. Acta. 374: 176–186.

    PubMed  CAS  Google Scholar 

  • Meier, D., Lee-Huang, S., and Ochoa, S. 1973. Factor requirements for initiation complex formation with natural and synthetic messengers in E. coli. systems. J. Biol. Chem. 248: 8613–8615.

    PubMed  CAS  Google Scholar 

  • Merkel, C. G., Wood, T. G., and Lingal, J. B. 1976. Shortening of the poly(A) region of mouse globin mRNA. J. Biol. Chem. 251: 5512–5515.

    PubMed  CAS  Google Scholar 

  • Mertes, M., Peters, M. A., Mahoney, W., and Yarus, M. 1972. Isoleucylation of tRNAFet (E. coli). by isoleucyl-tRNA synthetase from E. coli. J. Mol. Biol. 71: 671–685.

    CAS  Google Scholar 

  • Mescher, A., and Humphreys, T. 1974. Activation of maternal mRNA in the absence of poly(A) formation in fertilised sea urchin eggs. Nature. 249: 138–139.

    PubMed  CAS  Google Scholar 

  • Metafora, S., Terada, M., Dow, L. W., Marks, P. A., and Bank, A. 1972. Increased efficiency of exogenous mRNA translation in a Krebs ascites cell lystate. Proc. Nat. Acad. Sci. USA. 69: 1299–1303.

    PubMed  CAS  Google Scholar 

  • Meyer, M., Bout, W. S., de Vries, M., and Nanninga, N. 1974. Electron microscopic and sedimentation studies on rat-liver ribosomal subunits. Eur. J. Biochem. 42: 259–268.

    PubMed  CAS  Google Scholar 

  • Miller, D. L., and Weissbach, H. 1974. Elongation factor Tu and the aminoacyl-tRNA EF-Tu GTP complex. Methods Enzymol. 30: 219–232.

    PubMed  CAS  Google Scholar 

  • Miller, R. V., and Sypherd, P. S. 1973. Topography of the E. coli. 30 S ribosome revealed by the modification of ribosomal proteins. J. Mol. Biol. 78: 539–550.

    PubMed  CAS  Google Scholar 

  • Milman, G., Goldstein, J., Scolnick, E., and Caskey, T. 1969. Peptide chain termination. Proc. Nat. Acad. Sci. USA. 63: 183–190.

    PubMed  CAS  Google Scholar 

  • Min Jou; W., Haegeman, G., Ysebaert, M., and Fiers, W. 1972. Nucleotide sequence of the gene. coding for the bacteriophage MS2 coat protein. Nature. 237: 82–88.

    Google Scholar 

  • Miyazaki, M. 1974. Studies on the nucleotide sequence of pseudoruidine-containing 5 S RNA from S. cerevisiae. J. Biochem. 75: 1407–1410.

    Google Scholar 

  • Mizumoto, K., Iwasaki, K. Kazior, Y., Nojiri, C., and Yamada, Y. 1974. Studies on peptide EF-2 from pig liver. J. Biochem. 75: 1057–1062.

    Google Scholar 

  • Modolell, J. 1974. The initial steps in protein synthesis. Methods Enzymol. 30: 79–86.

    PubMed  CAS  Google Scholar 

  • Monroy, A., Maggio, R., and Rinaldi, A. M. 1965. Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc. Nat. Acad. Sci. USA. 54: 107–111.

    PubMed  CAS  Google Scholar 

  • Montagnier, L., Collandre, H., De Maeyer-Guiguard, J., and De Maeyer, E. 1974. Two forms of mouse interferon mRNA. Biochem. Biophys. Res. Comm. 59: 1031–1038.

    PubMed  CAS  Google Scholar 

  • Moore, P. B., Engelman, D. M., and Schoenborn, B. P. 1974. Asymmetry in the 50 S ribosomal subunit of E. coli. Proc. Nat. Acad. Sci. USA. 71: 172–176.

    CAS  Google Scholar 

  • Moore, V. G., Atchison, R. E., Thomas, G., Moran, M., and Noller, H. F., 1975. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc. Nat. Acad. Sci. USA. 72: 844–848.

    PubMed  CAS  Google Scholar 

  • Morel, C., Kayibanda, B. and Scherrer, K. 1971. Proteins associated with globin mRNA in avian erythroblasts. FEBS Lett. 18: 84–88.

    PubMed  CAS  Google Scholar 

  • Morell, P., and Marmur, J. 1968. Association of 5 S RNA to 50 S subunits of E. coli. and B. subtilis. Biochemistry. 7: 1141–1152.

    CAS  Google Scholar 

  • Morikawa, N., and Imamoto, F. 1969. On the degradation of mRNA for the tryptophan operon in E. coli. Nature. 223: 37–40.

    CAS  Google Scholar 

  • Morinaga, T., Funatsu, G., Funatsu, M., and Wittmann, H. G. 1976. Primary structure of the 16 S rRNA binding protein Sl5 from E. coli. ribosomes. FEBS Lett. 64: 307–309.

    PubMed  CAS  Google Scholar 

  • Munsche, D., and Wollgiehn, R. 1974. Altersabhängige labilität der ribosomalen RNA aus chloroplasten von Nicotiana rustica. Biochim. Biophys. Acta. 340: 437–445.

    CAS  Google Scholar 

  • Murthy, M. R. V. 1972. Free and membrane bound ribosomes of rat cerebral cortex. J. Biol. Chem. 247: 1936–1943.

    PubMed  CAS  Google Scholar 

  • Musso, R. E., de Crombrugghe, B., Pastan, I., Sklar, J., Yot, P., and Weissman, S. 1974. The 5’-terminal nucleotide sequence of galactose mRNA of E. coli. Proc. Nat. Acad. Sci. USA. 71: 4941–4944.

    Google Scholar 

  • Muthukrishnan, S., Both, G. W., Furuichi, Y., and Shatkin, A. J. 1975. 5’-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature. 255: 33–37.

    Google Scholar 

  • Muto, A. 1970. Nucleotide distribution of E. coli. 16 S rRNA. Biochemistry. 9: 3683–3693.

    PubMed  CAS  Google Scholar 

  • Naaktgeboren, N., Roobol, K., and Voorma, H. O. 1977. The effect of the initiation factor IF-1 on the dissociation of 70-S ribosomes of E. coli. Eur. J. Biochem. 72: 49–56.

    CAS  Google Scholar 

  • Nakamoto, T., Conway, T. W., Allende, J. E., Spyrides, G. J., and Lipmann, F. 1963. Formation of peptide bonds. Cold Spring Harbor Symp. Quant. Biol. 28: 227–232.

    CAS  Google Scholar 

  • Nakazato, H., Venkatesan, S., and Edmonds, M. 1975. Poly(A) sequences in E. coli. mRNA. Nature. 256: 144–146.

    PubMed  CAS  Google Scholar 

  • Nanninga, A. 1973. Structural aspects of ribosomes. Int. Rev. Cytol. 35: 135–188.

    PubMed  CAS  Google Scholar 

  • Natale, P. J., and Buchanan, J. M. 1974. Initiation characteristics for the synthesis of five T4 phage-specific mRNAs in vitro. Proc. Nat. Acad. Sci. USA. 71: 422–426.

    CAS  Google Scholar 

  • Nathans, D., and Lipmann, F. 1961. Amino acid transfer from aminoacyl-RNAs to protein on ribosomes of E. coli. Proc. Nat. Acad. Sci. USA. 47: 497–504.

    CAS  Google Scholar 

  • Nazar, R. N., Sitz, T. O., and Busch, H. 1975. Tissue specific differences in the 2’-O-methylation of eukaryotic 5.8 S ribosomal RNA. FEBS Lett. 59: 83–87.

    PubMed  CAS  Google Scholar 

  • Nazar, R. N., Sitz, T. O., and Busch, H. 1976. Sequence homologies in mammalian 5.8 S rRNA. Biochemistry. 15: 505–508.

    PubMed  CAS  Google Scholar 

  • Nesbitt, J. A., and Lennarz, W. J. 1968. Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3088–3095.

    PubMed  CAS  Google Scholar 

  • Nishikawa, K., and Takemura, S. 1974. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 40: 106–109.

    CAS  Google Scholar 

  • Nishizuka, Y., and Lipmann, F. 1966. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli. system. Proc. Nat. Acad. Sci. USA. 55: 212–219.

    PubMed  CAS  Google Scholar 

  • Nolan, R. D., Grasmuk, H., Högenauer, G., and Drews, J. 1974. EF-1 from Krebs II mouse ascites cells. Eur. J. Biochem. 45: 601–609.

    PubMed  CAS  Google Scholar 

  • Nolan, R. D., Grasmuk, H., and Drews, J. 1975. The binding of tritiated EF-1 and EF-2 to ribosomes from Krebs II mouse ascites tumor cells. Eur. J. Biochem. 50: 391–402.

    PubMed  CAS  Google Scholar 

  • Noller, H. F. 1974. Topography of 16 S RNA in 30 S ribosomal subunits. Biochemistry. 13: 4694–4703.

    PubMed  CAS  Google Scholar 

  • Noller, H. F., and Herr, W. 1974. Nucleotide sequence of the 3’-terminus of E. coli. 16 S rRNA. Mol. Biol. Repts. 1: 437–439.

    CAS  Google Scholar 

  • Nomura, M. 1973. Assembly of bacterial ribosomes. Science. 179: 864–873.

    PubMed  CAS  Google Scholar 

  • Nudel, U., LeBleu, B., Zehavi-Willner, T., and Revel, M. 1973. Messenger RNP and initiation factors in rabbit-reticulocyte polyribosomes. Eur. J. Biochem. 33: 314–322.

    PubMed  CAS  Google Scholar 

  • Ohta, N., Sanders, M., and Newton, A. 1975. Poly(A) sequences in the RNA of Caulobacter crescentus. Proc. Nat. Acad. Sci. USA. 72: 2343–2346.

    CAS  Google Scholar 

  • Olsnes, S. 1970. Characterization of protein bound to rapidly-labeled RNA in polyribosomes from rat liver. Eur. J. Biochem. 15: 464–471.

    PubMed  CAS  Google Scholar 

  • Ono, Y., Skoultchi, A., Klein, A.; and Lengyel, P. 1968. Discrimination against the initiator tRNA by microbial amino-acid polymerization factors. Nature. 220: 1304–1307.

    PubMed  CAS  Google Scholar 

  • Otaka, T., and Kaji, A. 1974. Inhibitory effect of EF-G and GMPPCP on peptidyl transferase. FEBS Lett. 44: 324–329.

    PubMed  CAS  Google Scholar 

  • Ouellette, A. J., and Malt, R. A. 1976. Accumulation and decay of mRNA in mouse kidney. Biochemistry. 15: 3358–3361.

    CAS  Google Scholar 

  • Pace, N. R. 1973. Structure and synthesis of the rRNA of prokaryotes. Bact. Rev. 37: 562–603.

    PubMed  CAS  Google Scholar 

  • Pace, N. R., Walker, T. A., and Pace, B. 1974. The nucleotide sequence of chicken 5 S rRNA. J. Mol. Evol. 3: 151–159.

    PubMed  CAS  Google Scholar 

  • Pain, V. N., and Clemens, M. J. 1973. The role of soluble protein factors in the translational control of protein synthesis in eukaryotic cells. FEBS Lett. 32: 205–212.

    PubMed  CAS  Google Scholar 

  • Paradies, H. H., Franz, A., Pon, C. L., and Gualerzi, C. 1974. Conformational transition of the 30 S ribosomal subunit induced by IF-3. Biochem. Biophys. Res. Comm. 59: 600–607.

    PubMed  CAS  Google Scholar 

  • Payne, P. I., Woledge, J., and Cony, M. J., 1973. No evidence for tissue-specific sequences of cytoplasmic 5 S and 5.8 S ribosomal RNAs in the broad bean. FEBS Lett. 35: 327–330.

    PubMed  CAS  Google Scholar 

  • Peeters, B., Vanduffel, L., Depuydt, A., and Rombauts, W. 1973. The number and size of the proteins in the subunits of human placental ribosomes. FEBS Lett. 36: 217–221.

    PubMed  CAS  Google Scholar 

  • Pemberton, R. E., Housman, D., Lodish, H., and Baglioni, C. 1972. Isolation of duck haemoglobin mRNA and its translation by rabbit reticulocyte cell-free system. Nature New Biol. 235: 99–102.

    PubMed  CAS  Google Scholar 

  • Pene, J. J., Knight, E., and Darnell, J. E. 1968. Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J. Mol. Biol. 33: 609–624.

    PubMed  CAS  Google Scholar 

  • Penman, S., Scherrer, K., Becker, Y., and Darnell, J. E. 1963. Polyribosomes in normal and poliovirus infected HeLa cells and their relationship to mRNA. Proc. Nat. Acad. Sci. USA. 49: 654–662.

    PubMed  CAS  Google Scholar 

  • Perlman, S., Abelson, H., and Penman, S. 1973. Mitochondrial protein synthesis: RNA with the properties of eukaryotic mRNA. Proc. Nat. Acad. Sci. USA. 70: 350–353.

    PubMed  CAS  Google Scholar 

  • Perlman, S., Hirsch, M., and Penman, S. 1972. Utilization of messenger in adenovirus-2-infected cells at normal and elevated temperatures. Nature New Biol. 238: 143–144.

    PubMed  CAS  Google Scholar 

  • Perry, R. P., and Kelley, D. E. 1974. Existence of methylated mRNA in mouse L cells. Cell. I: 37–42.

    Google Scholar 

  • Perry, R. P., Kelley, D. E., and La Torre, J. 1972. Lack of poly(A) sequences in the mRNA of E. coli. Biochem. Biophys. Res. Comm. 48: 1593–1600.

    CAS  Google Scholar 

  • Perry, R. P., and Scherrer, K. 1975. The methylated constituents of globin mRNA. FEBS Lett. 57: 73–78.

    PubMed  CAS  Google Scholar 

  • Person, S., and Osburn, M. 1968. The conversion of amber. suppressors to ochre. suppressors. Proc. Nat. Acad. Sci. USA. 60: 1030–1038.

    PubMed  CAS  Google Scholar 

  • Petersen, N. S., and McLaughlin, C. S. 1973. Monocistronic mRNA in yeast. J. Mol. Biol. 81: 33–45.

    PubMed  CAS  Google Scholar 

  • Petrissant, G. 1973. Evidence for the absence of the G-T-/t-C sequence from two mammalian initiator transfer RNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.

    PubMed  CAS  Google Scholar 

  • Philipson, L., Wall, R., Glickman, G., and Darnell, J. E. 1971. Addition of poly(A) sequences to virus-specific RNA during adenovirus replication. Proc. Nat. Acad. Sci. USA. 68: 2806–2809.

    PubMed  CAS  Google Scholar 

  • Pieczenik, G., Horiuchi, K., Model, P., McGill, C., Mazur, B. J., Vorts, G. F., and Zinder, N. D. 1975. Is mRNA transcribed from the strand complementary to it in a DNA duplex? Nature. 253: 131–132.

    CAS  Google Scholar 

  • Polya, G. M., and Phillips, D. R. 1976. The occurrence in amino acid sequences of extensive informational symmetries based on possible codon-codon complementarity in the encoding polynucleotides. Biochem. J. 153: 681–690.

    PubMed  CAS  Google Scholar 

  • Pribula, C. D., Fox, G. E., and Woese, C. R. 1974. Nucleotide sequence of Bacillus megaterium. 5 S RNA. FEBS Lett. 44: 322–323.

    PubMed  CAS  Google Scholar 

  • Pribula, C. D., Fox, G. E., and Woese, C. R. 1976. Nucleotide sequence of Clostridium pasteurianum. 5. S rRNA. FEBS Lett. 64: 350–352.

    PubMed  CAS  Google Scholar 

  • Procunier, J. D., and Tartof, K. D. 1976. Restriction map of 5 S RNA genes of D. melanogaster. Nature. 263: 255–257.

    CAS  Google Scholar 

  • Puckett, L., Chambers, S., and Darnell, J. E. 1975. Short-lived mRNA in HeLa cells and its impact on the kinetics of accumulation of cytoplasmic polyadenylate. Proc. Nat. Acad. Sci. USA. 72: 389–393.

    PubMed  CAS  Google Scholar 

  • Rawson, J. R., and Stutz, E. 1968. Characterization of Euglena. cytoplasmic ribosomes and rRNA by zone velocity sedimentation in sucrose gradients. J. Mol. Biol. 33: 309–314.

    PubMed  CAS  Google Scholar 

  • Reid, B. R., Einarson, B., and Schmidt, J. 1972. Loop accessibility in transfer RNA. Biochimie. 54: 325–332.

    CAS  Google Scholar 

  • Reinbolt, J., and Schiltz, E. 1973. The primary structure of ribosomal protein S4 from E. coli. FEBS Lett. 36: 250–252.

    CAS  Google Scholar 

  • Retel, J., and Planta, R. J. 1968. Investigation of the rRNA sites in yeast DNA by the hybridization technique. Biochim. Biophys. Acta. 169: 416–429.

    PubMed  CAS  Google Scholar 

  • Revel, M., Lelong, J. C., Brawerman, G., and Gros, F. 1968a. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli. Nature. 219: 1016 1020.

    Google Scholar 

  • Revel, M., Herzberg, H., Becarevic, A., and Gros, F. 1968b. Role of a protein factor in the functional binding of ribosomes to natural mRNA. J. Mol. Biol. 33: 231–249.

    PubMed  CAS  Google Scholar 

  • Rho, H. M., and Green, M. 1974. The homopolyadenylate and adjacent nucleotides at the 3’-terminus of 30–40 S RNA subunits in the genome of murine sarcoma-leukemia virus. Proc. Nat. Acad. Sci. USA. 71: 2386–2390.

    PubMed  CAS  Google Scholar 

  • Ricard, B., and Salser, W. 1974. Size and folding of the messenger for phage T4 lysozyme. Nature. 248: 314–317.

    PubMed  CAS  Google Scholar 

  • Ricard, B., and Salser, W. 1975. Secondary structures formed by random RNA sequences. Biochem. Biophys. Res. Comm. 63: 548–554.

    PubMed  CAS  Google Scholar 

  • Richter, D., Erdmann, V. A., and Sprinzl, M. 1973. Specific recognition of GTiiC loop (Loop IV) of tRNA by 50 S ribosomal subunits. Nature New Biol. 246: 132–135.

    PubMed  CAS  Google Scholar 

  • Riley, W. T. 1973. Amino acid sequences and double-stranded messages-a means of directing the site of mutation? J. Theor. Biol. 40: 285–300.

    PubMed  CAS  Google Scholar 

  • Ringer, D., and Chlâdek, S. 1974. Ribosomal peptidyl transferase: recognition points on the 3’-terminus of AA-tRNA. FEBS Lett. 39: 75–78.

    PubMed  CAS  Google Scholar 

  • Ritter, E., and Wittmann-Liebold, B. 1975. The primary structure of protein L30 from E. coli. ribosomes. FEBS Lett. 60: 153–155.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J. 1972. Structure of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–45.

    Google Scholar 

  • Robinson, E. A., Henriksen, O., and Maxwell, E. S. 1974. Elongation factor 2. J. Biol. Chem. 249: 5088–5093.

    PubMed  CAS  Google Scholar 

  • Rohrbach, M. S., Dempsey, M. E., and Bodley, J. W. 1974. Preparation of homogeneous EF-G and examination of the mechanism of guanosine triphosphate hydrolysis. J. Biol. Chem. 249: 5094–5101.

    PubMed  CAS  Google Scholar 

  • Ron, E. Z., Kohler, R. E., and Davis, B. D. 1968. Magnesium ion dependence of free and polysomal ribosomes from E. coli. J. Mol. Biol. 36: 83–90.

    CAS  Google Scholar 

  • Rosbash, M., and Ford, P. J. 1974. Poly(A)-containing RNA in Xenopus laevis. J. Mol. Biol. 85: 87–101.

    CAS  Google Scholar 

  • Rosen, J M., Woo, S. L. C., Holder, J W., Means, A. R., and O’Malley, B. W. 1975. Preparation and preliminary characterization of purified ovalbumin mRNA from the hen oviduct. Biochemistry. 14:69–78.

    Google Scholar 

  • Rubin, G. M. 1973. The nucleotide sequence of S. cerevisiae. 5.8 S rRNA. J. Biol. Chem. 248: 3860–3875.

    PubMed  CAS  Google Scholar 

  • Rubin, G. M. 1974. Three forms of the 5.8 S ribosomal RNA species in S. cerevisiae. Eur. J. Biochem. 41: 197–202.

    CAS  Google Scholar 

  • Sabol, S., and Ochoa, S. 1974. Preparation of radioactive IF-3. Methods Enzymol. 30:39–53. Sabol, S., Sillero, M. A. G., Iwasaki, K. and Ochoa, S. 1970. Purification and properties of IF-3. Nature. 228: 1269–1273.

    Google Scholar 

  • Sadowski, P. D., and Howden, J. A. 1968. Isolation of two distinct classes of polysomes from a nuclear fraction of rat liver. J. Cell. Biol. 37: 163–181.

    Google Scholar 

  • Sager, R., and M. G. Hutchinson. 1967. Cytoplasmic and chloroplast ribosomes of Chlamydomonas. Science. 157: 709–711.

    CAS  Google Scholar 

  • Sagher, D., Edelman, M., and Jakob, K. M. 1974. Poly(A)-associated RNA in plants. Biochim. Biophys. Acta. 349: 32–38.

    PubMed  CAS  Google Scholar 

  • Sampson, J., Mathews, M. B., Osburn, M., and Borghetti, A. F. 1972. Hemoglobin mRNA translation in cell-free systems from rat and mouse liver and Landschutz ascites cells. Biochemistry. 11. :3636–3640.

    Google Scholar 

  • Sanger, F. 1971. Nucleotide sequences in bacteriophage RNA. Biochem. J. 124: 833–843.

    PubMed  CAS  Google Scholar 

  • Sankoff, D., Morel, C., and Cedergren, R. J. 1973. Evolution of 5 S RNA and the nonrandomness of base replacement. Nature New Biol. 245: 232–234.

    PubMed  CAS  Google Scholar 

  • Santi, D. V., and Danenberg, P. V. 1971. Phenylalanyl tRNA synthetase from E. coli. Analysis of the phenylalanine binding site. Biochemistry. 10: 4813–4820.

    PubMed  CAS  Google Scholar 

  • Santi, D. V., Danenberg, P. V., and Satterly, P. 1971. Phenylalanyl tRNA synthetase from E. coli. Reaction parameters and order of substrate addition. Biochemistry. 10: 4804–4812.

    PubMed  CAS  Google Scholar 

  • Scharff, M. D., and Robbins, E. 1966. Polyribosome disaggregation during metaphase. Science. 151: 922–995.

    Google Scholar 

  • Schedl, P. D., Singer, R. E., and Conway, T. W. 1970. A factor required for the translation of bacteriophage f2 RNA in extracts of T4-infected cells. Biochem. Biophys. Res. Comm. 38: 631–637.

    PubMed  CAS  Google Scholar 

  • Schiff, N., Miller, M. J. and Wahba, A. J. 1974. Purification and properties of chain IF-3 from T4-infected and uninfected E. coli. MRE600. J. Biol. Chem. 249: 3797–3802.

    PubMed  CAS  Google Scholar 

  • Schutz,l E., and Reinbolt, J. 1975. Determination of the complete amino-acid sequence of protein S4 from E. coli. ribosomes. Eur. J. Biochem. 56: 467–481.

    Google Scholar 

  • Shimotohno, K., Kodama, Y., Hashimoto, J., and Miura, K. 1977. Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc. Nat. Acad. Sci. USA. 74: 2734–2738.

    PubMed  CAS  Google Scholar 

  • Schlessinger, D., Marchesi, V. T., and Kwan, B. C. K. 1965. Binding of ribosomes to cytoplasmic reticulum of Bacillus megaterium. J. Bact. 90: 456–466.

    CAS  Google Scholar 

  • Schrier, P. I., Maassen, J. A., and Möller, W. 1973., Involvement of 50 S ribosomal proteins L6 and L10 in the ribosome dependent GTPase activity of EF-G. Biochem. Biophys. Res. Comm. 53: 90–98.

    Google Scholar 

  • Schrier, P. I., and Möller, W. 1975. The involvement of 50 S ribosomal protein L11 in the EF-G dependent GTP hydrolysis of E. coli. ribosomes. FEBS Lett. 54: 130–134.

    PubMed  CAS  Google Scholar 

  • Scolnick, E., Tompkins, R., Caskey, T., and Nirenberg, M. 1968. Release factors differing in specificity for terminator codons. Proc. Nat. Acad. Sci. USA. 61: 768–774.

    PubMed  CAS  Google Scholar 

  • Seal, S. N., and Marcus, A. 1973. Translation of the initial codons of satellite tobacco necrosis virus RNA in a cell-free system from wheat embryo. J. Biol. Chem. 248: 6577–6582.

    PubMed  CAS  Google Scholar 

  • Shine, J., and Dalgarno, L. 1973. Occurrence of heat-dissociable rRNA in insects. J. Mol. Biol. 75: 57–72.

    PubMed  CAS  Google Scholar 

  • Shine, J., and Dalgarno, L. 1974a. The 3’-terminal sequence of E. coli. 16 S ribosomal RNA. Proc. Nat. Acad. Sci. USA. 71: 1342–1346.

    PubMed  CAS  Google Scholar 

  • Shine, J., and Dalgarno, L. 1974b. Identical 3’-terminal octanucleotide sequence in 18 S ribosomal ribonucleic acid from different eukaryotes. Biochem. J. 141: 609–615.

    PubMed  CAS  Google Scholar 

  • Shine, J., and Dalgarno, L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature. 254: 34–38.

    PubMed  CAS  Google Scholar 

  • Shine, J., Hunt, J. A., and Dalgarno, L. 1974. Studies on the 3’-terminal sequences of the large rRNA of different eukaryotes and those associated with `hidden’ breaks in heat-dissociable insect 26 S RNA. Biochem. J. 141: 617–625.

    PubMed  CAS  Google Scholar 

  • Siddiqui, M. A. Q., and Hosokawa, N. 1968. Role of 5 S rRNA in polypeptide synthesis. Biochem. Biophys. Res. Comm. 32: 1–8.

    PubMed  CAS  Google Scholar 

  • Siegert, W., Bauer, G., and Hofschneider, P. H. 1973. Direct evidence for messenger activity of influenza virion RNA. Proc. Nat. Acad. Sci. USA. 70: 2960–2963.

    PubMed  CAS  Google Scholar 

  • Simsek, M., Petrissant, G., and Rajbhandary, U. L. 1973a. Replacement of the sequence G-T-a(rC-G(A) by G-A-U-C-G in initiator transfer RNA of rabbit liver cytoplasm. Proc. Nat. Acad. Sci. USA. 70: 2600–2604.

    PubMed  CAS  Google Scholar 

  • Simsek, M., Ziegenmeyer, J., Heckman, J., and Rjbhandary, U. L. 1973b. Absence of the sequence G-T-ijr-C-G(A) in several eukaryotic cytoplasmic initiator transfer RNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.

    PubMed  CAS  Google Scholar 

  • Singer, R. E., and Conway, T. W. 1973. Defective initiation of f2 RNA translation by ribosomes from bacteriophage T4-infected cells. Biochim. Biophys. Acta. 331: 102–116.

    PubMed  CAS  Google Scholar 

  • Skogerson, L., and Wakatama, E. 1976. A ribosome-dependent GTPase from yeast distinct from EF-2. Proc. Nat. Acad. Sci. USA. 73: 73–76.

    PubMed  CAS  Google Scholar 

  • Slack, J. M. W., and Loening, U. E. 1974. 28 S RNA from Xenopus laevis. contains a sequence of three adjacent 2’-O-methylations. Eur. J. Biochem. 43: 69–72.

    Google Scholar 

  • Slater, I., Gillespie, D., and Slater, D. W. 1973. Cytoplasmic adenylation and processing of maternal RNA. Proc. Nat. Acad. Sci. USA. 70: 406–411.

    PubMed  CAS  Google Scholar 

  • Slayter, H., Kiho, Y., Hall, C. E., and Rich, A. 1968. An electron microscopic study of large bacterial polyribosomes. J. Cell Biol. 37: 583–590.

    PubMed  CAS  Google Scholar 

  • Smith, I., Dubnau, D., Morrell, P., and Marmur, J. 1968. Chromosomal location of DNA base sequences complementary to tRNA and to 5 S, 16 S, and 23 S ribosomal RNA in B. subtilis. J. Mol. Biol. 33: 123–140.

    CAS  Google Scholar 

  • Smith, K. E., and Henshaw, E. C. 1975. Binding of met-tRNAf to native and derived 40 S ribosomal subunits. Biochemistry. 14: 1060–1067.

    PubMed  CAS  Google Scholar 

  • Spencer, M., Pigram, W. J., and Littlechild, J. 1969. Studies on rRNA structure. Biochim. Biophys. Acta. 179: 348–359.

    PubMed  CAS  Google Scholar 

  • Spierer, P, Zimmermann, R. A., and Mackie, G. A. 1975. RNA-protein interactions in the ribosome. Eur. J. Biochem. 52: 459–468.

    PubMed  CAS  Google Scholar 

  • Spirin, A. S. 1969. Informosomes. Eur. J. Biochem. 10: 20–35.

    PubMed  CAS  Google Scholar 

  • Stadler, H. 1974. The primary structure of the 16 S rRNA binding protein S8 from E. coli. ribosomes. FEBS Lett. 48: 114–116.

    PubMed  CAS  Google Scholar 

  • Stadler, H., and Wittmann-Liebold, B. 1976. Determination of the amino-acid sequence of the ribosomal protein S8 of E. coli. Eur. J. Biochem. 66: 49–56.

    CAS  Google Scholar 

  • Stavnezer, J., and Juang, R. C. C. 1971. Synthesis of a mouse immunoglobin light chain in a rabbit reticulocyte cell-free system. Nature New Biol. 230: 172–176.

    PubMed  CAS  Google Scholar 

  • Steitz, J. A. 1969. Polypeptide chain initiation. Nature. 224: 957–964.

    PubMed  CAS  Google Scholar 

  • Steitz, J. A. 1973. Discriminatory ribosome rebinding of isolated regions of protein synthesis initiation from the RNA of bacteriophage R17. Proc. Nat. Acad. Sci. USA. 70: 2605–2609.

    PubMed  CAS  Google Scholar 

  • Stevens, A. R., and Pachler, P. F. 1972. Discontinuity of 26 S rRNA inAcanthamoeba castellani. J. Mol. Biol. 66: 225–237.

    CAS  Google Scholar 

  • Steward, D. L., Shaeffer, J. R., and Humphrey, R. M. 1968. Breakdown and assembly of polyribosomes in synchronized Chinese hamster cells. Science. 161: 791–793.

    PubMed  CAS  Google Scholar 

  • Stewart, J. W., Sherman, F., Shipman, N. A., and Jackson, M. 1971. Identification and mutational relocation of the AUG codon initiating translation of iso-l-cytochrome c. in yeast. J. Biol. Chem. 246: 7429–7445.

    PubMed  CAS  Google Scholar 

  • Stiles, C. D., Lee, K.-L., and Kenney, F. T. 1976. Differential degradation of mRNAs in mammalian cells. Proc. Nat. Acad. Sci. USA. 73: 2634–2638.

    PubMed  CAS  Google Scholar 

  • Stöffier, G., Hasenbank, R., Bodley, J. W., and Highland, J. H. 1974. Inhibition of protein L7/L12 binding to 50 S ribosomal cores by antibodies specific for L6, L10, and L18. J. Mol. Biol. 86: 171–174.

    Google Scholar 

  • Stöffler, G., Wool, I. G., Lin, A., and Rak, K.-H. 1974. The identification of the eukaryotic ribosomal proteins homologous with E. coli. proteins L7 and L12. Proc. Nat. Acad. Sci. USA. 71: 4723–4726.

    PubMed  Google Scholar 

  • Stoltzfus, C. M., Shatkin, A. J., and Banerjee, A. K. 1973. Absence of poly(A) from reovirus mRNA. J. Biol. Chem. 248: 7993–7998.

    PubMed  CAS  Google Scholar 

  • Strycharz, W. A., Ranki, M., and Dahl, H. H. M. 1974. A high-molecular-weight protein component required for natural messenger translation in ascites tumor cells. Eur. J. Biochem. 48: 303–310.

    PubMed  CAS  Google Scholar 

  • Subramanian, A. R. 1974. Sensitive separation procedure for E. coli. ribosomal proteins and the resolution of high-molecular-weight components. Eur. J. Biochem. 45: 541–546.

    PubMed  CAS  Google Scholar 

  • Subramanian, A. R., and Davis, B. D. 1970. Activity of IF3 in dissociating E. coli. ribosomes. Nature. 228: 1273–1275.

    PubMed  CAS  Google Scholar 

  • Subramanian, A. R., Ron, E. Z., and Davis, B. D. 1968. A factor required for ribosome dissociation in E. coli. Proc. Nat. Acad. Sci. USA. 61: 761–767.

    CAS  Google Scholar 

  • Sundaric, R. M., Stringer, E. A. Schulman, L. D. H., and Maitra, U. 1976. Interaction of bacterial IF-2 with initiator tRNA. J. Biol. Chem. 251: 3338–3345.

    Google Scholar 

  • Sundquist, B., Persson, T., and Lindberg, U. 1977. Characterization of mRNA-protein complexes from mammalian cells. Nucl. Acids Res. 4: 899–915.

    PubMed  CAS  Google Scholar 

  • Sussman, M. 1966. Protein synthesis and the temporal control of genetic transcription during slime mold development. Proc. Nat. Acad. Sci. USA. 55: 813–818.

    PubMed  CAS  Google Scholar 

  • Szer, W., Hermoso, J. M., and Leffler, S. 1975. Ribosomal protein Si and polypeptide chain initiation in bacteria. Proc. Nat. Acad. Sci. USA. 72: 2325–2329.

    PubMed  CAS  Google Scholar 

  • Szer, W., and Leffler, S. 1974. Interaction of E. coli. 30 S ribosomal subunits with MS2 phage RNA in the absence of initiation factors. Proc. Nat. Acad. Sci. USA 71: 3611–3615.

    PubMed  CAS  Google Scholar 

  • Takagi, M., Tanaka, T., and Ogatu, K. 1970. Chromosome activity and cell function in polytenic cells. Biochim. Biophys. Acta 217: 108–119.

    Google Scholar 

  • Tate, W. P., Beaudet, A. L., and Caskey, C. T. 1973. Influence of guanine nucleotides and elongation factors on interaction of release factors with the ribosome. Proc. Nat. Acad. Sci. USA. 70: 2350–2352.

    PubMed  CAS  Google Scholar 

  • Terao, K., and Ogata, K. 1975. Studies on structural proteins of the rat liver ribosomes. Biochim. Biophys. Acta. 402: 214–229.

    PubMed  CAS  Google Scholar 

  • Teraoka, H., and Tanaka, K. 1973. Effect of polyamines on the binding of dihydrostreptomycin and N-acetylphenylalanyl-tRNA to ribosomes from E. coli. Eur. J. Biochem. 40: 423429.

    Google Scholar 

  • Terhorst, C., Möller, W., Laursen, R., and Wittmann-Liebold, B. 1973. The primary structure of an acidic protein which is involved in GTP hydrolysis dependent on elongation factors G and T. Eur. J. Biochem. 34: 138–152.

    PubMed  CAS  Google Scholar 

  • Terhorst, C., Wittmann-Liebold, B., and Möller, W. 1972. 50 S ribosomal proteins. Eur. J. Biochem. 25: 13–19.

    Google Scholar 

  • Toivonen, J. E., and Nierlich, D. P. 1974. Biological decay of the 5’-triphosphate termini of the RNA of E. coli. Nature. 252: 74–76.

    CAS  Google Scholar 

  • Träeger, L. 1970. Termination der Proteinsynthese. Naturwissenschaften. 57: 560–564.

    Google Scholar 

  • Tsiapalis, C. M., Dorson, J. W., De Sante, D. M., and Bollum, F. J. 1973. Terminal riboadenylate transferase. Biochem. Biophys. Res. Comm. 50: 737–743.

    PubMed  CAS  Google Scholar 

  • Tsurugi, K., Morita, T., and Ogata, K. 1974. Mode of degradation of ribosomes in regenerating rat liver in vivo. Eur. J. Biochem. 45: 119–126.

    CAS  Google Scholar 

  • Ulbrich, B., and Nierhaus. K. H., 1975. Pools of ribosomal proteins in E. coli. Eur. J. Biochem. 57: 49–54.

    CAS  Google Scholar 

  • Van, N. T., Holder, J. W., Woo, S. L. C., Means, A. R., and O’Malley, B. W. 1976. Secondary structure of ovalbumin mRNA. Biochemistry. 15: 2054–2062.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., Francq, H., and Van Montagu, M. 1969. The amino acid sequence of the coat protein of the bacteriophage MS-2 and localization of the amber mutation in the coat mutants growing on a sul suppressor. Arch. Intern. Physiol. Biochim. 77: 175–180.

    CAS  Google Scholar 

  • Vandekerckhove, J., Rombauts, W., Peeters, B., and Wittmann-Liebold, B. 1975. Determination of the complete amino-acid sequence of protein S21 from E. coli. Hoppe-Seyler’s Z. Phys. Chem. 356: 1955–1976.

    CAS  Google Scholar 

  • Vandekerckhove, J., Rombauts, B., and Wittmann-Liebold, B. 1977. The primary structure of protein S16 from E. coli. ribosomes. FEBS Lett. 73: 18–21.

    PubMed  CAS  Google Scholar 

  • Van de Walle, C. 1973. Poly(A) sequences in plant RNA. FEBS Lett. 34: 31–34.

    PubMed  Google Scholar 

  • Van Dieijen, G., Van der Laken, C. J., van Knippenberg, P. H., and Van Duin, J. 1975. Function of E. coli. ribosomal protein S1 in translation of natural and synthetic mRNA. J. Mol. Biol. 93: 351–366.

    PubMed  Google Scholar 

  • Van Duin, J., and van Knippenberg, P. H. 1974. Requirement of protein S1 for translation. J. Mol. Biol. 84: 185–195.

    PubMed  Google Scholar 

  • Van Duin, J., van Knippenberg, P. H., Dieben, M., and Kurland, C. G. 1972. Functional heterogeneity of the 30 S ribosomal subunit of E. coli. Mol. Gen. Genetics. 116: 181–191.

    Google Scholar 

  • van Knippenberg, P. H. 1975. A possible role of the 5’-terminal sequence of 16 S rRNA in the recognition of initiation sequences for protein synthesis. Nucl. Acids Res. 2: 79–85.

    PubMed  Google Scholar 

  • van Knippenberg, P. H., Hooykass, P. J. J., and Van Duin, J. 1974. The stoichiometry of E. coli 30S ribosomal protein S1 on in vivo and in vitro polyribosomes. FEBS Lett. 41: 323–326.

    Google Scholar 

  • Vaquero, C., Reibel, L., Delaunay, J., and Schapiro, G. 1973. Translation of globin mRNA among eukaryotes. Biochem. Biophys. Res. Comm. 54: 1171–1177.

    PubMed  CAS  Google Scholar 

  • Vaughn, M. H., and Hansen, D. S., 1973. Control of initiation of protein synthesis in human cells. J. Biol. Chem. 248: 7087–7096.

    Google Scholar 

  • Vigne, R., Jordan, B. R., and Monier, R. 1973. A common conformational feature in several prokaryotic and eukaryotic 5 S RNAs. J. Mol. Biol. 76: 303–311.

    PubMed  CAS  Google Scholar 

  • Visentin, L. P., Matheson, A. T., and Yaguchi, M. 1974. Homologies in procaryotic ribosomal proteins. FEBS Lett. 41: 310–314.

    PubMed  CAS  Google Scholar 

  • Volckaert, G., and Fiers, W. 1973. Studies on the bacteriophage MS2. G-U-G as the initiation codon of the A-protein cistron. FEBS Lett. 35: 91–96.

    PubMed  CAS  Google Scholar 

  • Volkin, E., and Astrachan, L. 1956. Phosphorus incorporation in E. coli. RNA after infection with bacteriophage T2. Virology. 2: 149–161.

    PubMed  CAS  Google Scholar 

  • Vournakis, J., and Rich, A. 1972. Ribosomal transformations during protein synthesis. In: Cox, R. A., and A. A. Hadjiolov, eds., Functional Units in Protein Biosynthesis., New York, Academic Press, p. 287–299.

    Google Scholar 

  • Wade, M., Laursen, R. A., and Miller, D. L. 1975. Amino acid sequence of EF-Tu. FEBS Lett. 53: 37–39.

    PubMed  CAS  Google Scholar 

  • Wahba, A. J., Mazumder, R., Iwasaki, K., Choe, Y. B., Miller, M. J., Sillero, M. A. G., and Ochoa, S. 1968. Role of ribosome factors in polypeptide chain initiation. Abstr. Fed. Eur. Biochem. Soc., Madrid., p. 9.

    Google Scholar 

  • Wahba, A. J., and Miller, M. J. 1974. Chain initiation factors from E. coli. Meth. Enzym. 30: 3–18.

    CAS  Google Scholar 

  • Walker, T. A., Betz, J. L., Olah, J., and Pace, N. R. 1975. The nucleotide sequence of dolphin and bovine 5 S rRNA. FEBS Lett. 54: 241–244.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Koenigsberg, W. 1967. Amino acid sequence of the f2 coat protein. J. Biol. Chem. 242: 3563–3578.

    CAS  Google Scholar 

  • Wegnez, M., Monier, R., and Denis, H. 1972. Sequence heterogeneity of 5 S RNA in Xenopus laevis. FEBS Lett. 25: 13–20.

    CAS  Google Scholar 

  • Wei, C. M., Gershowitz, A., and Moss, B. 1976. 5’-terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry. 15: 397–401.

    Google Scholar 

  • Weiner, A. M., and Weber, K. 1973. A single UGA codon functions as a natural termination signal in the coliphage Qß coat protein cistron. J. Mol. Biol. 80: 837–855.

    PubMed  CAS  Google Scholar 

  • Weissbach, H., Redfield, B., and Moon, H. M. 1973. Further studies on the interactions of EF-1 from animal tissues. Arch. Biochem. Biophys. 156: 267–275.

    PubMed  CAS  Google Scholar 

  • Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H. 1973. Structure and function of phage RNA. Ann. Rev. Biochem. 42: 303–328.

    PubMed  CAS  Google Scholar 

  • Welfie, H., Stahl, J., and Bielka, H. 1972. Studies on proteins of animal ribosomes. FEBS Lett. 26: 228–232.

    Google Scholar 

  • Wells, G. N., and Beevers, L. 1974. Protein synthesis in the cotyledons of Pisum sativum. L. Biochem. J. 139: 61–69.

    PubMed  CAS  Google Scholar 

  • Wen, W. N., León, P. E., and Hague, D. R. 1974. Multiple gene sites for 5 S and 18 + 28 S RNA on chromosomes of Glyptotendipes barvipes. J. Cell Biol. 62: 132–144.

    CAS  Google Scholar 

  • Westover, K. C., and Jacobson, L. A. 1974. Control of protein synthesis in E. coli. J. Biol. Chem. 249: 6272–6279.

    CAS  Google Scholar 

  • White, H. B., Laux, B. E., and Dennis, D. 1972. Messenger RNA structure: Compatibility of hairpin loops with protein sequence. Science. 175: 1264–1266.

    PubMed  CAS  Google Scholar 

  • Wice, M., and Kennell, D. 1974. Decay of mRNA from the tryptophan operon of E. coli. as a function of growth temperature. J. Mol. Biol. 84: 649–652.

    PubMed  CAS  Google Scholar 

  • Wigle, D. T., and Smith, A. E. 1973. Specificity in initiation of protein synthesis in a fractionated mammalian cell-free system. Nature New Biol. 242: 136–140.

    PubMed  CAS  Google Scholar 

  • Williamson, A. R., and Schweet, R. 1964. Role of the genetic message in initiation and release of the polypeptide chain. Nature. 202: 435–437.

    PubMed  CAS  Google Scholar 

  • Williamson, R. 1973. The protein moieties of animal messenger ribonucleoproteins. FEBS Lett. 37: 1–6.

    PubMed  CAS  Google Scholar 

  • Williamson, R., and Brownlee, G. G. 1969. The sequence of 5 S ribosomal RNA from two mouse cell lines. FEBS Lett. 3: 306–308.

    PubMed  CAS  Google Scholar 

  • Williamson, R., Morrison, M., Lanyon, G., Eason, R., and Paul, J. 1971. Properties of mouse globin mRNA and its preparation in milligram quantities. Biochemistry. 70: 3014–3020.

    Google Scholar 

  • Wittmann, H. G. 1976. Structure, function and evolution of ribosomes. Eur. J. Biochem. 61: 1–13.

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B. 1973. Studies on the primary structure of 20 proteins from E. coli. ribosomes by means of an improved protein sequenator. FEBS Lett. 36: 247–249.

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B., and Dzionara, M. 1976a. Comparison of amino acid sequences among ribosomal proteins of E.coli. FEBS Lett. 61: 14–19.

    CAS  Google Scholar 

  • Wittman-Liebold, B., and Dzionara, M. 1976b. Studies on the significance of sequence homologies among proteins from E. coli. ribosomes. FEBS Lett. 65: 281–283.

    Google Scholar 

  • Wittmann-Liebold, B., Greuer, B., and Pannenbecker, R. 1975. The primary structure of protein L32 from the 50 S subunit of E. coli. ribosomes. Hoppe-Seyler’s Z. Phys. Chem. 356: 1977–1979.

    CAS  Google Scholar 

  • Wittman-Liebold, B., Marzinzig, E., and Lehmann, A. 1976. Primary structure of protein S20 from the small ribosomal subunit of E. coli. FEBS Lett. 68: 110–114.

    Google Scholar 

  • Wittmann-Liebold, B., and Pannenbecker, R. 1976. Primary structure of protein L33 from the large subunit of the E. coli. ribosome. FEBS Lett. 68: 115–118.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1972. Evolution of macromolecular complexity. J. Theor. Biol. 33: 29–34.

    Google Scholar 

  • Woledge, J., Corry, M. J., and Payne, P. I. 1974. Ribosomal RNA homologies in flowering plants. Biochim. Biophys. Acta. 349: 339–350.

    PubMed  CAS  Google Scholar 

  • Wong, J. T. F. 1975. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA. 72: 1909–1912.

    PubMed  CAS  Google Scholar 

  • Wong, K. L., Bolton, P. H., and Kearns, D. R. 1975. Tertiary structure in E. coli. tRNAArg and tRNAva’ Biochim. Biophys. Acta. 383: 446–451.

    PubMed  CAS  Google Scholar 

  • Wong, Y. P., Reid, B. R., and Kearns, D. R. 1973. Conformation of charged and uncharged tRNAPhe. Proc. Nat. Acad. Sci. USA. 70: 2193–2195.

    PubMed  CAS  Google Scholar 

  • Woodley, C. L., Chen, Y. C., and Gupta, N. K. 1974. Purification and properties of the peptide chain initiation factors from rabbit reticulocytes. Methods Enzymol. 30: 141–153.

    PubMed  CAS  Google Scholar 

  • Yaguchi, M. 1975. Primary structure of protein S18 from the small E. coli. ribosomal subunit. FEBS Lett. 59: 217–220.

    PubMed  CAS  Google Scholar 

  • Yaguchi, M., Matheson, A. T., and Visentin, L. P. 1974. Procaryotic ribosomal proteins: N-terminal sequence homologies and structural correspondence of 30 S ribosomal proteins from E. coli. and Bacillus stearothermophilus. FEBS Lett. 46: 296–300.

    CAS  Google Scholar 

  • Yamada, Y., Whitaker, P. A., and Nakada, D. 1974. Functional instability of T7 early mRNA. Nature. 248: 335–338.

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and Ito, J. 1966. Nonsense codons and polarity in the tryptophan operon. J. Mol. Biol. 21: 313–334.

    PubMed  CAS  Google Scholar 

  • Yams, M. 1972. Phenylalanyl-tRNA synthetase and isoteucy1-tRNAphe: A possible verification mechanism for aminoacyl-tRNA. Proc. Nat. Acad. Sci. USA. 69: 1915–1919.

    Google Scholar 

  • Yarus, M., and Barrell, B. G. 1971. The sequence of nucleotides in tRNA1e from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.

    PubMed  CAS  Google Scholar 

  • Yogo, Y., and Wimmer, E. 1972. Poly(A) at the 3’-terminus of poliovirus RNA. Proc. Nat. Acad. Sci. USA. 69: 1877–1882.

    PubMed  CAS  Google Scholar 

  • Yokosawa, H., Inoue-Yokosawa, N., Arai, K.-i., Kawakita, M., and Kaziro, Y. 1973. The role of guanosine triphosphate hydrolysis in EF-Tu-promoted binding of aminoacyl tRNA to ribosomes. J. Biol. Chem. 248: 375–377.

    PubMed  CAS  Google Scholar 

  • Yu, R. S. T., and Wittmann, H. G. 1973. The sequence of steps in the attachment of 5 S RNA ta cores of E. coli. ribosomes. Biochim. Biophys. Acta. 324: 375–385.

    PubMed  CAS  Google Scholar 

  • Zalik, S., and Jones, B. L. 1973. Protein biosynthesis. Ann. Rev. Plant Physiol. 24: 47–68.

    CAS  Google Scholar 

  • Zasloff, M., and Ochoa, S. 1971. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc. Nat. Acad. Sci. USA. 68: 3059–3063.

    PubMed  CAS  Google Scholar 

  • Zasloff, M., and Ochoa, S. 1973. Polypeptide chain initiation in eukaryotes. J. Mol. Biol. 73: 65–76.

    PubMed  CAS  Google Scholar 

  • Zinder, N. 1963. Properties of a bacteriophage containing RNA. Perspectives Virol. 3: 58–67.

    CAS  Google Scholar 

  • Zylber, E. A., and Penman, S. 1971. Synthesis of 5 S and 4 S RNA in metaphase-arrested HeLa cells. Science. 172: 947–949.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1978). The Genetic Mechanism: II The Cell’s Employment of DNA. In: The Genetic Mechanism and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2436-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2436-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2438-6

  • Online ISBN: 978-1-4684-2436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics