Skip to main content

The Precellular, or Simple Interacting Systems, Level (Stage III)

  • Chapter
The Genetic Mechanism and the Origin of Life
  • 100 Accesses

Abstract

Although in certain aspects of the prebiotic synthesis and polymerization of life’s basic biochemical ingredients some problems still resist satisfactory solution, the number and diversity of procedures that have been successful promise that at least some portions of the theories proposed do approach reality. Nor should there be any real concern over which specific pathway was the one that had been followed exclusively on the primitive earth, for several, or even many, different processes may have been active during the billion or more years which the early stages seem to have occupied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. E., and Gillard, R. D. 1967. Stereoselective effects in peptide complexes. Chem. Commun. 1967: 1091–1092.

    Google Scholar 

  • Allen, W. V., and Ponnamperuma, C. 1967. Possible prebiotic synthesis of monocarboxylic acids. Curr. Mod. Biol. 1: 24–28.

    PubMed  CAS  Google Scholar 

  • Aronoff, S. 1975. The number of biologically possible porphyrin isomers. Ann. N.Y. Acad. Sci. 244: 327–333.

    PubMed  CAS  Google Scholar 

  • Bada, J. L. 1972. The dating of fossil bones using the racemization of isoleucine. Earth Planet. Sci. Lett. 15: 223–231.

    CAS  Google Scholar 

  • Bada, J. L., and Schroeder, R. A. 1972. Racemization of isoleucine in calcareous marine sediments-kinetics and mechanism. Earth Planet. Sci. Lett. 15: 1–7.

    CAS  Google Scholar 

  • Bada, J. L., Schroeder, R. A., and Carter, G. F. 1974. New evidence for the antiquity of man in North America deduced from aspartic acid racemization. Science. 184: 791–793.

    PubMed  CAS  Google Scholar 

  • Bernal, J. D. 1967. The Origin of Life., New York, World Publishing Co.

    Google Scholar 

  • Bonner, W. A., and Flores, J. J., 1973. On the asymmetric adsorption of phenylalanine enantiomers by kaolin. Curr. Mod. Biol. 5: 103–113.

    PubMed  CAS  Google Scholar 

  • Bonner, W. A., and Flores, J. J. 1975. Experiments on the origins of optical activity. Origins Life. 6: 187–194.

    CAS  Google Scholar 

  • Bonner, W. A., Kavasmaneck, P. R., Martin, F. S., and Flores, J. J. 1974. Asymmetric adsorption of alanine by quartz. Science. 186: 143–144.

    PubMed  CAS  Google Scholar 

  • Bullock, E., and Elton, R. A. 1972. Dipeptide frequencies in proteins and the CpG deficiency in vertebrate DNA. J. Mol. Evol. 1: 315–325.

    PubMed  CAS  Google Scholar 

  • Calvin, M. 1956. Chemical evolution and the origin of life. Am. Sci. 44: 248–263.

    Google Scholar 

  • Calvin, M. 1969. Chemical Evolution: Molecular Evolution Towards the Origin of Systems on the Earth and Elsewhere., Oxford, Oxford University Press.

    Google Scholar 

  • Calvin, M. 1975. Chemical evolution. Am. Sci. 63: 169–177.

    PubMed  CAS  Google Scholar 

  • Chibnall, A. C., and Westall, R. W. 1932. The estimation of glutamine in the presence of asparagine. Biochem. J. 26: 122–132.

    PubMed  CAS  Google Scholar 

  • Darge, W., Sass, R., and Thiemann, W. 1973. Enzymatic hydrolysis of poly-DL-lysine. Z. Naturforsch. 28: 116–119.

    CAS  Google Scholar 

  • Degens. E. T., Matheja, J., and Jackson, T. A. 1970. Template catalysis: asymmetric polymerization of amino-acids on clay minerals. Nature. 227: 492–493.

    Google Scholar 

  • de Jong, H. G. B. 1932. Die Koazervation und ihre Bedeutung für die Biologie. Protoplasma. 15: 110–176.

    Google Scholar 

  • de Jong, H. G. B. 1947. Distribution of the complex component, which is present in excess, between complex coacervate and equilibrium liquid. Proc. K. Nederland. Akad. Wetenschap. 50: 707–711.

    Google Scholar 

  • Dillon, L. S. 1974. Neovulcanism: A proposed replacement for continental drift. Mem. Amer. Assoc. Petrol. Geol. 23: 167–239.

    Google Scholar 

  • Dillon, L. S. 1978. Evolution: Concepts and Consequences. 2nd Ed., St. Louis, C. V. Mosby Co.

    Google Scholar 

  • Dose, K. 1971. Catalysis. In: Schwartz, A. W., ed., Theory and Experiment in Exobiology, Gronigen, Wolters-Noordhoff Publishing Co., Vol. 1, p. 43–71.

    Google Scholar 

  • Dose, K. 1974. Chemical and catalytical properties of thermal polymers of amino acids (proteinoids). Origins Life. 5: 239–252.

    CAS  Google Scholar 

  • Dose, K., and Zaki, L. 1971. Hämoproteinoide mit perodatischer and katalatischer Aktivitat. Z. Naturforsch. 26b: 144–148.

    Google Scholar 

  • Evreinova, T. N. 1964. Distribution of nucleic acids in coacervate droplets. Dokl. Akad. Nauk. SSSR. 141: 246–249.

    Google Scholar 

  • Evreinova, T. N., and Kuznetsova, A. 1959. Determination of the weight of separate coacervate drops by interference microscopy. Dokl. Akad. Nauk. SSSR. 124: 688–691.

    Google Scholar 

  • Evreinova, T. N., and Kuznetsova, A. 1961. Application of interference microscopy to coacervates. Biofizika. 6: 320–328.

    Google Scholar 

  • Evreinova, T. N., and Kuznetsova, A. 1963. Histone-protamine nucleic acid coacervate drops. Biofizika. 8: 459–463.

    Google Scholar 

  • Evreinova, T. N., Pogosova, A., Chukanova, T., and Larinovoa, T. 1962. Introduction of amino acids into coacervates. Naunchn. Dokl. Vysshei Shkoly. 1. :159–164.

    Google Scholar 

  • Evreinova, T. N., Mamontova, T. W., and Karnaukhov, V. N. 1972. Coacervate systems and evolution of matter. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 361–370.

    Google Scholar 

  • Evreinova, T. N., Mamontova, T. W., Karnaukhov, V. N., Stephanov, S. B., and Hrust, U. R. 1974. Coacervate systems and origin of life. Origins Life. 5: 201–205.

    CAS  Google Scholar 

  • Fisher, H., and Orth, H. 1972. Die Chemie des Pyrrols. Vol. 2. Leipzig, Akademische Verlag.

    Google Scholar 

  • Flatmark, T. 1964. Studies on the peroxidase effect of cytochrome c. II. Purification of beef heart cytochrome c by gel filtrations. Acta. Chem. Scand. 18: 1517–1527.

    CAS  Google Scholar 

  • Flatmark, T. 1967. Multiple molecular forms of bovine heart cytochrome c. V. A comparative study of their physiochemical properties and their reactions in biological systems. J. Biol. Chem. 242: 2454–2459.

    PubMed  CAS  Google Scholar 

  • Flatmark, T., and Sletten, K. 1968. Multiple forms of cytochrome c in the rat. J. Bio. Chem. 243: 1623–1629.

    CAS  Google Scholar 

  • Flores, J. J., and Bonner, W. A. 1974. On the asymmetric polymerization of aspartic acid enantiomers by kaolin. J. Mol. Evol. 3: 49–50.

    PubMed  CAS  Google Scholar 

  • Fox, R. F. 1972. A non-equilibrium thermodynamical analysis of the origin of life. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 79–99.

    Google Scholar 

  • Fox, S. W. 1964. Thermal polymerization of amino acids and production of formed microparticles on lava. Nature. 201: 336–337.

    PubMed  CAS  Google Scholar 

  • Fox, S. W. 1965. A theory of macromolecular and cellular origins. Nature. 205: 328–339.

    PubMed  CAS  Google Scholar 

  • Fox, S. W. 1968. Abiotic polymerization and self-organization. In: Mark, H. F., N. G. Gaylord, and N. M. Bikales, eds., Encyclopedia of Polymer Science and Technology., Vol. 9., New York, Interscience, p. 284–314.

    Google Scholar 

  • Fox, S. W. 1975. Stereomolecular interactions and microsystems in experimental protobiogenesis. BioSystems. 7: 22–36.

    PubMed  CAS  Google Scholar 

  • Fox, S. W. 1976. The evolutionary significance of phase-separated microsystems. Origins Life. 7: 49–68.

    CAS  Google Scholar 

  • Fox, S. W., and Dose, K. 1972. Molecular Evolution and the Origin of Life., San Francisco, W. H. Freeman and Company.

    Google Scholar 

  • Fox, S. W., and Harada, K. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science. 128: 1214.

    PubMed  CAS  Google Scholar 

  • Fox, S. W., and Harada, K. 1960. The thermal polymerization of amino acids common to protein. J. Am. Chem. Soc. 82: 3745–3752.

    CAS  Google Scholar 

  • Fox, S. W., and Harada, K. 1961. Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science. 133:1923–1924.

    Google Scholar 

  • Fox, S. W., Harada, K., and Vegotsky, A. 1959. Thermal polymerization of amino acids and a theory of biochemical origins. Experientia. 15: 81–84.

    PubMed  CAS  Google Scholar 

  • Fox, S. W., Harada, K., Woods, K. R., and Windsor, C. R. 1963. Amino acid compositions of proteinoids. Arch. Biochem. Biophys. 102: 439–445.

    PubMed  CAS  Google Scholar 

  • Fox, S. W., McCauley, R. J., and Wood, A. 1967. A model of primitive heterotrophic proliferation. Comp. Biochem. Physiol. 20: 773–778.

    Google Scholar 

  • Fox, S. W., Jungck, J. R., and Nakashima, T. 1974. From proteinoid microsphere to contemporary cell: Formation of internucleotide and peptide bonds by proteinoid particles. Origins Life. 5: 227–237.

    CAS  Google Scholar 

  • Fox, S. W., and Krampitz, G. 1964. Catalytic decomposition of glucose in aqueous solution by thermal proteinoids. Nature. 203: 1362–1364.

    PubMed  Google Scholar 

  • Fox, S. W., and Suzuki, F. 1976. Linkages in thermal copolymers of lysine. BioSystems. 8: 40 14.

    Google Scholar 

  • Fox, S. W., and Yuyama, S. 1963. Abiotic production of primitive protein and formed microparticles. Ann. N.Y. Acad. Sci. 108: 487–494.

    PubMed  CAS  Google Scholar 

  • Frydman, B., Frydman, R. B., Valasinas, A., Levy, S., and Feinstein, G. 1975. The mechanism of uroporphyrinogen biosynthesis. Ann. N.Y. Acad. Sci. 244: 371–395.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. B., Price, V. E., and Greenstein, J. P. 1949. Effect of anions on the coenzymatic deamidation of glutamine. J. Biol. Chem. 180: 209–218.

    PubMed  CAS  Google Scholar 

  • Goldacre, R. J. 1958. Surface films, their collapse on compression, the shapes and sizes of cells and the origin of life. In: Danielli, J. R., K. G. A. Pankhurst, and A. C. Riddiford, eds., Surface Phenomena in Chemistry and Biology., London, Pergamon Press, p. 276–278.

    Google Scholar 

  • Harada, K., and Fox, S. W. 1975. Characterization of functional groups of acidic thermal polymers of a-amino acids. BioSystems. 7: 213–221.

    PubMed  CAS  Google Scholar 

  • Hardebeck, H. G., Krampitz, G., and Wulf, L. 1968. Decarboxylation of pyruvic acid in aqueous solution by thermal proteinoids. Arch. Biochem. Biophys. 123: 72–81.

    PubMed  CAS  Google Scholar 

  • Harfenist, E. J. 1953. The amino acid compositions of insulins isolated from beef, pork, and sheep glands. J. Am. Chem. Soc. 75: 5528–5533.

    CAS  Google Scholar 

  • Herrera, A. L. 1924. Biologia y plasmogenia. Mexico City, H. Hermanos Sucesores.

    Google Scholar 

  • Herrera, A. L. 1942. A new theory of the origin and nature of life. Science. 96: 14.

    PubMed  CAS  Google Scholar 

  • Hodgson, G. W., and Ponnamperuma, C. A. 1968. Prebiological porphyrin synthesis: Porphyrins from electric discharge in methane, ammonia, and water vapor. Proc. Nat. Acad. Sci. USA. 59: 22–28.

    PubMed  CAS  Google Scholar 

  • Hsu, L. L. 1972. Conjugation of proteinoid microspheres: A model of primordial recombination. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 371–378.

    Google Scholar 

  • Hsu, L. L., and Fox, S. W. 1976. Interactions between diverse proteinoids and microspheres in simulation of primordial evolution. BioSystems. 8: 89–101.

    PubMed  CAS  Google Scholar 

  • Jackson, A. H., and Games, D. E. 1975. The later stages of porphyrin biosynthesis. Ann. N.Y. Acad. Sci. 244: 591–601.

    PubMed  CAS  Google Scholar 

  • Jackson, T. A. 1971. Evidence for the selective adsorption and polymerization of the L-optical isomers of amino acids relative to the D-optical isomers on the edge faces of kaolinite. Experientia. 27: 242–243.

    PubMed  CAS  Google Scholar 

  • Josse, J., Kaiser, A. D., and Kornberg, A. 1961. Enzymatic synthesis of DNA. VIII. J. Biol. Chem. 236: 864–875.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H. 1966. Molecules and Evolution., New York, Columbia University Press.

    Google Scholar 

  • Kambe, M., Sakamoto, Y., and Kurahashi, K. 1971. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis. ATCC8185. IV. Further separation of component II into two fractions. J. Biochem. 69: 1131–1133.

    PubMed  CAS  Google Scholar 

  • Keim, P., Vigna, R. A., Morrow, J. S., Marshall, R. C., and Gurd, F. R. N. 1973. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues serine, threonine, aspartic and glutamic acids, asparagine, and glutamine. J. Bio. Chem. 248: 7811–7818.

    CAS  Google Scholar 

  • Kenyon, D. H., and Steinman, G. 1969. Biochemical Predestination., New York, McGraw-Hill Book Company.

    Google Scholar 

  • King, G. A. M. 1977. Symbiosis and the origin of life. Origins Life. 8: 39–53.

    CAS  Google Scholar 

  • Klabunoswkii, E. I. 1959. Absolute asymmetric synthesis and asymmetric catalysis. In: Oparin, A. I., ed., Origin of Life on Earth., London, Pergamon Press, p. 158–168.

    Google Scholar 

  • Kleinkauf, H., and Gevers, W. 1969. Nonribosomal polypeptide synthesis: The biosynthesis of a cyclic peptide antibiotic, gramidicin S. Cold Spring Harbor Symp. Quant. Biol. 34: 805–813.

    PubMed  CAS  Google Scholar 

  • Krampitz, G. 1959. Untersuchungen und Aminosäure-Kopolymerisaten. Naturwissenschaften. 46: 558.

    CAS  Google Scholar 

  • Krampitz, G., Diehl, S., and Nakashima, T. 1967. Aminotransferase-Aktivität von Polyanhydro-aAminosäuren (Proteinoiden). Naturwissenschaften. 54: 516–517.

    PubMed  CAS  Google Scholar 

  • Krampitz, G., Haas, W., and Baars-Diehl, S. 1968. Glutaminsäure-Oxydoreduktase-Aktivität von Polyanhydro-a-Aminosäuren (Proteinoiden). Naturwissenschaften. 55: 345–346.

    PubMed  CAS  Google Scholar 

  • Lederberg, J. 1960a. A view of genetics. Science. 131: 269–276.

    PubMed  CAS  Google Scholar 

  • Lederberg, J. 1960b. Exobiology: Approaches to life beyond the earth. Science. 132: 393–400.

    PubMed  CAS  Google Scholar 

  • Lipmann, F. 1971. Attempts to map a process evolution of peptide biosynthesis. Science. 173: 875–884.

    PubMed  CAS  Google Scholar 

  • Lipmann, F. 1972. A mechanism for polypeptide synthesis on a protein template. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Biology: Prebiological and Biological., New York, Plenum Press, p. 261–269.

    Google Scholar 

  • Lipmann, F., Gevers, W., Kleinkauf, H., and Roskoski, R. 1971. Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. 35: 1–34.

    PubMed  CAS  Google Scholar 

  • McCullough, J. J., and Lemmon, R. M. 1974. The question of the possible asymmetric polymerization of aspartic acid on kaolinite. J. Mol. Evol. 3: 57–61.

    PubMed  CAS  Google Scholar 

  • Noda, H., Mizutani, H., and Okihana, H. 1975. Marcromolecules and the origin of life. Origins Life. 6: 139–146.

    CAS  Google Scholar 

  • Noguchi, J., and Saito, T. 1962. In: Stahmann, M., ed. Polyamino Acids., Polypeptides., and Proteins. University Wisconsin Press, Madison, p. 313.

    Google Scholar 

  • Oparin, A. I. 1957. The Origin of Life on the Earth. 3rd Ed., New York, Academic Press. Oparin, A. I. 1968. Genesis and Evolutionary Development of Life., New York, Academic Press.

    Google Scholar 

  • Oparin, A. I. 1971. Coacervate drops as models of prebiological systems. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co. p. 1–7.

    Google Scholar 

  • Oparin, A. I. 1974. A hypothetical scheme for evolution of protobionts. Origins Life. 5: 223–226.

    CAS  Google Scholar 

  • Oparin, A. I., and Serebrovskaya, K. 1958. Activity of ribonuclease included into coacervate droplets. Dokl. Akad. Nauk SSSR. 122: 197–200.

    Google Scholar 

  • Oparin, A. I., Evreinova, T. N., Larionova, T. I., and Davydova, I. M. 1962. Synthesis and degradation of starch in coacervate droplets. Dokl. Akad. Nauk SSSR. 143: 980–983.

    CAS  Google Scholar 

  • Oparin, A. I., Serebrovskaya, K. B., Pantskava, S., and Vasil’eva, N. 1963. Enzymic synthesis of polyadenylic acid in coacervate drops. Biokhimiya. 28: 671–676.

    CAS  Google Scholar 

  • Oparin, A. I., Serebrovskaya, K. B., Vasil’eva, N. V., and Balaevskaya, T. O. 1964. [The formation of coacervates from polypeptides and polynucleotides]. Dokl. Akad. Nauk SSSR. 154: 471–472.

    Google Scholar 

  • Pattee, H. H. 1965. The recognition of hereditary order in primitive chemical systems. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 385–405.

    Google Scholar 

  • Robertson, J. D. 1959. Molecular theory of cell membrane structure. Verh. Internat. Kongr. E. M. 4: 159–171.

    Google Scholar 

  • Robertson, J. D. 1964. Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes. In: Locke, M., ed., Cellular Membranes in Development., New York, Academic Press, p. 1–81.

    Google Scholar 

  • Robinson, A. B. 1974. Evolution and the distribution of glutaminyl and asparaginyl residues in proteins. Proc. Nat. Acad. Sci. USA. 71: 885–888.

    PubMed  CAS  Google Scholar 

  • Robinson, A. B., Irving, K., and McCrea, M. 1973a. Acceleration of the rate of deamidation of Gly Arg Asn Arg Gly and of human transferrin by addition. of L-ascorbic acid. Proc. Nat. Acad. Sci. USA. 70: 2122–2123.

    PubMed  CAS  Google Scholar 

  • Robinson, A. B., Scotchler, J. W., and McKerrow, J. H. 19736. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. J. Am. Chem. Soc. 95: 8156–8159.

    Google Scholar 

  • Rohlfing, D. L. 1967. The catalytic decarboxylation of oxaloacetic acid by thermally prepared poly-a-amino acids. Arch. Biochem. Biophys. 118: 468–474.

    PubMed  CAS  Google Scholar 

  • Rohlfing, D. L. 1975. Coacervate-like microspheres from lysine-rich proteinoid. Origins Life. 6: 203–209.

    CAS  Google Scholar 

  • Rohlfing, D. L., and Fox, S. W. 1967. The catalytic activity of thermal polyanhydro-a-amino acids for the hydrolysis of p-nitrophenyl acetate. Arch. Biochem. Biophys. 118: 122–126.

    CAS  Google Scholar 

  • Roskoski, R., Gevers, W., Kleinkauf, H., and Lipmann, F. 1970. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis. (ATCC8185). Biochemistry. 9: 4839–4845.

    PubMed  Google Scholar 

  • Rubey, W. W. 1951. Geologic history of sea water: An attempt to state the problem. Bull. Geol. Soc. Am. 62: 1111–1148.

    CAS  Google Scholar 

  • Rubey, W. W. 1955. Development of the hydrosphere. Spec. Geol. Soc. Am. Pap. 62: 631–650.

    CAS  Google Scholar 

  • Russell, C. S. 1974. Biosynthesis of porphyrins. II. J. Theor. Biol. 47: 145–151.

    PubMed  CAS  Google Scholar 

  • Rutten, M. G. 1971. The Origin of Life by Natural Causes. Amsterdam, Elsevier Publishing Co.

    Google Scholar 

  • Schneider-Bernloehr, H., Lohrmann, R., Orgel, L. E., Sulston, J., and Weimann, B. J. 1968. Partial resolution of DL-adenosine by template synthesis. Science. 162: 809–810.

    PubMed  CAS  Google Scholar 

  • Schoffeniels, E. 1967. Cellular Aspects of Membrane Permeability., New York, Pergamon Press.

    Google Scholar 

  • Serebrovskaya, K. B., and Lozovaya, G. I. 1972. Modelling of structure and functional unity on coacervate systems. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New. York, Plenum Press, p. 353–360.

    Google Scholar 

  • Shemin, D. 1975. Porphyrin synthesis: Some particular approaches. Ann. N.Y. Acad. Sci. 244: 348–355.

    PubMed  CAS  Google Scholar 

  • Steinman, G. 1967a. Sequence generation in prebiological peptide synthesis. Arch. Biochem. Biophys. 119: 76–82.

    PubMed  CAS  Google Scholar 

  • Steinman, G. 1967b. Sequence generation in prebiological peptide synthesis. Arch. Biochem. Biophys. 121: 533–539.

    Google Scholar 

  • Steinman, G., and Cole, M. N. 1967. Synthesis of biologically pertinent peptides under possible primordial conditions. Proc. Nat. Acad. Sci. USA. 58: 735–742.

    PubMed  CAS  Google Scholar 

  • Subak-Sharpe, H., Bürk, R. R., Crawford, L. V., Morrison, J. M., Hay, J., and Keir, H. M. 1966. An approach to evolutionary relationships of mammalian DNA viruses through analysis of the pattern of nearest neighbor base sequences. Cold Spring Harbor Symp. Quant. Biol. 31: 737–748.

    PubMed  CAS  Google Scholar 

  • Swartz, M. N., Trautner, T. A., and Kornberg, A. 1962. Enzymatic synthesis of DNA. XI. Further studies on nearest neighbor base sequences in DNA. J. Bio. Chem. 237: 1961–1967.

    CAS  Google Scholar 

  • Thiemann, W. 1974. The origin of optical activity. Naturwissenschaften. 61: 1476–1483.

    Google Scholar 

  • Thiemann, W., and Darge, W. 1974. Experimental attempts for the study of the origin of optical activity on earth. Origins Life. 5: 263–283.

    CAS  Google Scholar 

  • Usdin, V. R., Mitz, M. A., and Killos, J. 1967. Inhibition and reactivation of the catalytic activity of a thermal a-amino acid copolymer. Arch. Biochem. Biophys. 122: 258–261.

    PubMed  CAS  Google Scholar 

  • Vegotsky, A., and Fox, S. W. 1959. Pyropolymerization of amino acids to proteinoids with phosphoric acid or polyphosphoric acid. Fed. Proc. 18: 343.

    Google Scholar 

  • West, E. S., and Todd, W. R. 1961. Textbook of Biochemistry. 3rd Ed., New York, Macmillan Company.

    Google Scholar 

  • Wood, A., and Hardebeck, H. G. 1972. Light-enhanced decarboxylations by proteinoids. Mol. Evol. 1972: 233–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1978). The Precellular, or Simple Interacting Systems, Level (Stage III). In: The Genetic Mechanism and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2436-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2436-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2438-6

  • Online ISBN: 978-1-4684-2436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics