Skip to main content

Beam-Profile Effects in Self-Induced Transparency: On-Resonance Self-Focusing of Coherent Optical Pulses in Absorbing Media

  • Chapter
Cooperative Effects in Matter and Radiation

Abstract

Analytic and numerical solutions of the Maxwell- Bloch equations, including transverse and time-dependent phase variations, predict on-resonance self-focusing and elucidate its formation due to the combined effects of diffraction and inertial response of the medium. This self-focusing can be characterized by a single parameter in terms of the beam and medium parameters. Recently, two independent experiments in sodium+ and neon++ demonstrated this new self-focusing effect of spatially non-uniform self-induced transparency pulses propagating in thick resonant absorbers. Comparison of the experimental results with the theoretical analysis will be presented.

The theoretical work reported here is part of a dissertation submitted by F.P. Matter in December 1975 as a partial fulfillment for the Ph. D. degree to Professor M.C. Newstein at the Department of Electiical Engineering and Electrophysics, polytechnic Institute of New York, Farmingdale, N.Y. 11735.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. McCall and E. L. Hahn, “Self-Induced Transparency by- Pulsed Coherent Light”: Phys. Rev. Letters, 18, 308 (1967) and “Self-Induced Transparency”, Phys. Rev., 183, 457 (1969).

    Article  ADS  Google Scholar 

  2. H. M. Gibbs and R. E. Slusher, “Optical Pulse Compression by Focusing a Resonant Absorber”, Appl. Phys. Letters, 18, 505 (1971); “Self-Induced Transparency in Atomic Rubidium”, Phys. Rev., A5, 1634 (1972); “Sharp-Line Self-Induced Transparency”, Phys. Rev., A6, 2326 (1972).

    Article  ADS  Google Scholar 

  3. G. Lamb, Jr., “Analytic Descriptions of Ultra-Short Optical Pulse Propagation in a Resonant Media”, Rev. Mod. Phys., 43, 94 (April 1971).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Kryuokow and Y. Letokov, “Propagation of a Light Pulse in a Resonantly Amplifying (Absorbing) Medium”, Rev. Sov. Phys. Uspekhy, Vol. 12, #5 (March-April, 1970).

    Google Scholar 

  5. E. Courtens, “Coherent Resonant Propagation Phenomenon in Absorbers,” Proceeding of 1969 Chania Conference (unpublished); “Nonlinear Coherent Resonant Phenomena”, Laser Handbook, Ed., F. Arecchi, North-Holland Pub. Co., (1972).

    Google Scholar 

  6. S. L. McCall and E. L. Hahn, “Pulse Area-Energy Description of a Travelling-Wave Laser Amplifier”, Phys. Rev. A, Vol. 2, 870–71 (1970).

    Article  ADS  Google Scholar 

  7. M. C. Newstein and N. Wright, “Transverse Behavior of Pulses Propagating Through Resonant Media”, Bull. Am. Phys. Soc, Series 11, 16, 12 (December 1971).

    Google Scholar 

  8. M. C. Newstein, N. Wright and F. P. Mattar, “The Spatial and Temporal Evolution of Optical Pulses in Resonant Media”,Progress Report #37 to JSTAC, Polytechnic Institute of Brooklyn (1972).

    Google Scholar 

  9. N. Wright and M. C. Newstein, “Self-Focusing of Coherent Pulses”, Optics Communications, 1, 8–13 (1973).

    Article  ADS  Google Scholar 

  10. M. C. Newstein and F. P. Mattar, Selected Annual Review to JSTAC of the Microwave Research Institute of the PolytechnicInstitute of New York (December 1974); Laser TAC Meeting of “Advances in Radiation Technology”, M.I.T., (May 1975); and Optical Society of America, Fall Meeting in Boston (October 1975) J. Opt. Soc. Am. 65, 10, 1181 (1975) and IX International Conf. of Quantum Electronics, Amsterdam (June 1976), Opt. Comm. 18, 70–72 (July 1976)

    Google Scholar 

  11. M. C. Newstein and F. P. Mattar, Proceedings of the Seventh Conference on Numerical Simulation of Plasma, Courant Institute of Mathematical Studies, N.Y. University, (June 1975).

    Google Scholar 

  12. F. P. Mattar, “Application of the McCormick Scheme and the Rezoning Technique to the Transient Propagation of Optical Beam in Active Media”, Laboratory of Laser Energetics, U. of Rochester, Technical Note #63 (1976) (to be published).

    Google Scholar 

  13. F. P. Mattar, “Self-Focusing of Coherent Pulses in Resonant Absorbers”, Proceedings of the 10th Congress of the International Commission for Optics, Prague, Czechoslovakia, (August 1975).

    Google Scholar 

  14. F. P. Mattar and M. C. Newstein, “Transverse Effects Associated with the Propagation of Coherent Optical Pulses in Resonant Media”, (to be published in IEEE J. of Quantum Electronics).

    Google Scholar 

  15. H. M. Gibbs, B. Bölger and L. Baede, “On-Resonance Self- Focusing of Optical Pulses Propagating Coherently in Sodium”, Opt. Commu. 18, 199–200 (1976)

    Article  ADS  Google Scholar 

  16. J. E. Bjorkholm and A. Ashkin, “CW Self-Focusing and Self- Trapping of Light in Sodium Vapor”, Phys. Rev. letters 32, 28–32 (1974).

    Article  Google Scholar 

  17. A. Javan and P. L. Kelley, “Possibility of Self-Focusing Due to Intensity Dependent Anomalous Dispersion”, IEEE J. of Quantum Electronics 2, 9, 470–473 (1966), and J. A. Fleck, Jr., and R. L. Carman, “Laser Pulse Shaping Due to Self-Phase Modulation in Amplifying Media”, Appl. Phys. Lett. 22, 10, 546–548 (1973).

    Article  ADS  Google Scholar 

  18. D. Grischkowsky, “Self-Focusing of Light by Potassium Vapor”, Phys. Rev. Letters 24, 866–869 (1970); D. Grischkowsky and J. Armstrong, “Adiabatic Following and the Self-Defocusing of Light in Rubidium”, 3rd Conference of Quantum Optics, University of Rochester (June 1972), pp. 829–831.

    Article  ADS  Google Scholar 

  19. W. Krieger, G. Gaida and P. E. Toschek, “Experimental and Numerical Study of Self-Induced Transparency in a Neon Absorber”, (to be published in Zeitschrift für Physik B).

    Google Scholar 

  20. H. M. Gibbs, B. Bölger, F. P. Mattar, M. C. Newstein, G. Forster and P. E. Toschek, “Coherent On-Resonance Self-Focusing of Optical Pulses in Absorbers,” Phys. Rev. Letters, 37, 1743–1746 (December 1976).

    Article  ADS  Google Scholar 

  21. The concept of “effective absorption coefficient has been introduced by Gibbs and Slusher in their discussion of coherent propagation in the regime where the inhomogeneous width (T2*)−1 was greater than the homogeneous width (T2)−1 but less than the inverse pulse duration (τp)−1. Under these conditions, the pulse behavior corresponds to that in a medium with a homogeneously broadened line.

    Google Scholar 

  22. S. L. McCall, “Instabilities in Continuous-Wave Light Propagation in Absorbing Media,” Phys. Review A 9, 4, 1515–1525, (1974).

    Article  ADS  Google Scholar 

  23. R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth, “Geometrical Representation of the Schrödinger’s Equations Solving Master Problems”, J. Appl. Phys. 28, 43–52 (1957).

    Article  ADS  Google Scholar 

  24. S. Chi, “Theory of the Generation and Propagation of Ultrashort Pulses in Laser Systems”, Ph.D. Thesis, Polytechnic Institute of Brooklyn (1972).

    Google Scholar 

  25. E. Courtens, “Coherent Resonant Propagation Phenomenon in Absorbers”, Proceedings of 1969 Chania Conference, IBM Research Zurich Tech. Report RZ 333 #12642, October 30, 1961; “Frequency of Steady 2π Pulses”, VI IEEE Intl. Conf. of Quantum Electronics, Kyoto, Japan, pp. 298–299 (1970).

    Google Scholar 

  26. R. Marth, “Theory of Chirped Optical Pulse Propagation in Resonant Absorbers”, Ph.D. Thesis, Polytechnic Institute of Brooklyn (1971).

    Google Scholar 

  27. J. C. Diels and E. L. Hahn, “Carrier-Frequency Distance Dependence of Pulse Propagating in a Two-Level System”, Physical Review A 8, 2, 1084–1110 (1973), and “Phase- Modulation Propagation Effects in Ruby”, Phys. Rev. A 10, 6, 2501–2509 (1974).

    Article  ADS  Google Scholar 

  28. F. A. Hopf and M. O. Scully, “Transient Pulse Behavior and Self-Induced Transparency”, Phys. Rev. Bl, 1, 50–53 (1970).

    ADS  Google Scholar 

  29. F. A. Hopf, “Amplifier Theory”, Higher Energy Lasers and Their Applications, Ed. by S. Jacobs et al, pp. 77–176,Addison Wesley (1975).

    Google Scholar 

  30. A. Icsevgi and W. E. Lamb, Jr., “Propagation of Light Pulses in a Nonlinear Laser”, Phys. Rev. 185, 517–547 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974). If coherent on-resonance self-focusing exists it is small relative to the maximum off-resonance CW SF.

    Google Scholar 

  32. B. Bolger, L. Baede and H. M. Gibbs, “Production of Tunable 300 Watt, Nanosecond, Transform Limited Optical Pulses and Their Application to Coherent Pulse Propagation,” Opt. Commun. 18, 67–68 (1976); “Production of 300W, Nanosecond Transformed Limited Optical Pulses,” Opt. Comm. 19, 346–349 (1976).

    Article  ADS  Google Scholar 

  33. B. R. Suydam, “Self-Focusing of Very Powerful Laser Beams”, Laser Induced Damage in Optical Material, NBS special publication 387, p. 42–48 (1973); and “Self-Focusing of Very Powerful Laser Beam II”, IEEE J. Quantum Electronics 10, 837–843 (1974); and “Effects of Refractive-Index Nonlinearity on the Optical Quality of High-Power Laser Beams”, IEEE J. Quantum Electronics 11, 225–230 (1975).

    Google Scholar 

  34. W. Krieger and P. E. Toschek, “Self-Induced Transparency on the 1.5 m Line of Neon,” Phys. Rev. A 11, 276–279 (1975).

    Article  ADS  Google Scholar 

  35. G. Forster and P. E. Toschek, paper presented at Quantum Optics Spring Meeting of the German Physical Society, Hannover, Germany, 1976 (unpublished).

    Google Scholar 

  36. S. L. McCall, “Self-Induced Transparency by Pulsed Coherent Light”, Ph.D., Physics, U. California, Berkely (1967) (Section V-A, pp. 34–39, XI-F, pp. 118–120, XII, pp. 121–122).

    Google Scholar 

  37. A. Zembrod and T. Gruhl, “Self-Induced Transparency of Degenerate Transitions with Thermally Equilibrated Levels”, Phys. Rev. Lett. 27, 287–290 (1971).

    Article  ADS  Google Scholar 

  38. C. K. Rhodes and A. Szoke, “Transmission of Coherent Optical in SF6,” Phys. Rev. 184, 25–37 (1969) and C. K. Rhodes, A. Szoke and A. Javan, “The Influence of Degeneracy on the Self- Induced Transparency Effect”, Phys. Rev. Lett. 21, 1151–1155 (1968); and “Influence of Degeneracy on Coherent Pulse Propagation in an Inhomogeneously Broadened Attenuator”, F. A. Hopf, C. K. Rhodes and A. Szoke, Phys. Rev. B 1, 7, 2833–2842.

    Article  ADS  Google Scholar 

  39. F. A. Hopf and M. O. Scully, “Theory of Inhomogeneous Amplifiers”, Phys. Rev. 179, 399–416 (1969).

    Article  ADS  Google Scholar 

  40. T. Gustafson, J. Taran, H. A. Haus, J. Lifsitz, P. Kelley, “Self-Modulation, Self-Steepening, and Spectral Development of Light in Small Scale Trapped Filaments”, Phys. Rev., 177, 306–313 (1969).

    Article  ADS  Google Scholar 

  41. F. Demartini, C. Townes, T. Gustafson and P. Kelley, “Self- Steepening of Light Pulses”, Phys. Rev., 164, 312–323 (1967).

    Article  ADS  Google Scholar 

  42. D. Grischkowsky, E. K. Courtens and J. Armstrong, “Observation of Self-Steepening of Optical Pulses with Possible Shock Formation”, Phys. Rev. Lett. 31, 422–425 (1973).

    Article  ADS  Google Scholar 

  43. A. J. Campillo, J. E. Pearson, S. L. Shapiro and N. J. Terrell, Jr., “Fresnel Diffraction Effects in the Design of High-Power Laser Systems”, Appl. Phys. Lett. 23, 85–87 (1973).

    Article  ADS  Google Scholar 

  44. R. A. Fisher and W. Bishel, “Numerical Studies of the Interplay Between Self-Phase Modulation and Dispersion for Intense Plane-Wave Laser Pulses”, J. Appl. Phys. 46, 4821–4834 (1973).

    Google Scholar 

  45. D. Grischkowsky, “Adiabatic Following”, Laser Applications to Optics and Spectroscopy, Ed. S. Jacobs et al. Addison Wesley (1975).

    Google Scholar 

  46. H. M. Gibbs, R. G. Slusher, “Self-Induced Transparency in Atomic Rubidium”, Phys. Rev. A5, 1634–1659 (1972).

    ADS  Google Scholar 

  47. H. M. Gibbs (private Communications to F. P. Mattar and M. C. Newstein, December, 1975).

    Google Scholar 

  48. H. M. Gibbs, “On-resonance Self-Focusing Phenomenon”, Joint seminar sponsored by LLE and the Physics and Astronomy Department at the University of Rochester (October, 1975).

    Google Scholar 

  49. F. P. Mattar, G. Forster, and P. E. Toschek, “On-resonance Self-Focusing In Neon,” Spring Meeting of the German Physical Society, Mayence, West Germany (28 February–4 March, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Mattar, F.P., Newstein, M.C. (1977). Beam-Profile Effects in Self-Induced Transparency: On-Resonance Self-Focusing of Coherent Optical Pulses in Absorbing Media. In: Bowden, C.M., Howgate, D.W., Robl, H.R. (eds) Cooperative Effects in Matter and Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2415-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2415-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2417-1

  • Online ISBN: 978-1-4684-2415-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics