Skip to main content

Fourier Transform Infrared Spectrometry: Theory and Instrumentation

  • Chapter
Transform Techniques in Chemistry

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Over the past decade Fourier transform infrared spectrometry (FT—IR) has become an important tool for vibrational spectroscopists and analytical chemists. In this chapter we will discuss the theory of FT—IR and show how it relates to instrumental design. The performance of FT—IR spectrometers will be compared to that of conventional grating spectrometers, and illustrated in the next chapter through descriptions of several applications where FT—IR has been used to advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy, Chapter 5, Academic Press, New York, 1972.

    Google Scholar 

  2. R. J. Anderson and P. R. Griffiths, Anal. Chem. 47, 2339 (1975).

    Article  CAS  Google Scholar 

  3. R. J. Bell, Introductory Fourier Transform Spectroscopy, Chapter 11, Academic Press, New York, 1972.

    Google Scholar 

  4. W. H. Steel, Interferometers for Fourier spectroscopy, Aspen Int. Conf Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 43.

    Google Scholar 

  5. T. Hirschfeld, Signal-noise ratios in Fourier transform spectrometry, 1976 Pittsburgh Conf Anal. Chem. Appi. Spectrosc. (Cleveland, Ohio), paper no. 385.

    Google Scholar 

  6. J. Chamberlain, Infrared Phys. 11, 25 (1971).

    Article  Google Scholar 

  7. J. Chamberlain and H. A. Gebbie, Infrared Phys. 11, 57 (1971).

    Article  Google Scholar 

  8. J. Connes, P. Connes, and J. P. Maillard, J. Phys. 28, C2: 120 (1967).

    Google Scholar 

  9. G. Guelachvili and J. P. Maillard, Fourier spectroscopy from 106 samples, Aspen Int. Conf Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 151.

    Google Scholar 

  10. M. Born and E. Wolf, Principles of Optics, Macmillan, New York, 1964.

    Google Scholar 

  11. P. Vogel and L. Genzel, Infrared Phys. 4, 257 (1964).

    Article  CAS  Google Scholar 

  12. H. Sakai, Consideration of the signal-to-noise ratio in Fourier spectroscopy, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 19.

    Google Scholar 

  13. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, pp. 120–125, Wiley- Interscience, New York, 1975.

    Google Scholar 

  14. P. L. Richards, J. Opt. Soc. Am. 54, 1474 (1964).

    Article  CAS  Google Scholar 

  15. M. J. E. Golay, Rev. Sci. Instrum. 18, 347, 357 (1947).

    Google Scholar 

  16. J. E. Stewart, Infrared Spectroscopy: Experimental Methods and Techniques, Chapter 11, Marcel Dekker, New York, 1970.

    Google Scholar 

  17. Cathodeon Ltd., Nuffield Road, Cambridge, CB4 1TF, England.

    Google Scholar 

  18. J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. MacDonald, J. Chem. Phys. 60, 4790 (1974).

    Google Scholar 

  19. T. Hirschfeld, Appi Spectrosc. 30, 68 (1976).

    Article  Google Scholar 

  20. F. Levy, R. C. Milward, S. Bras, and R. leToullec, “Real-time” far infrared Fourier spectroscopy using a small digital computer, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 331.

    Google Scholar 

  21. H. Yoshinaga, S. Fujita, S. Minami, Y. Suemoto, M. Inoue, K. Chiba, K. Nakano, S. Yoshida, and H. Sugimori, Appi. Opt. 5, 1159 (1966).

    Article  CAS  Google Scholar 

  22. P. R. Griffiths, Appi. Spectrosc. 29, 11 (1975).

    Article  CAS  Google Scholar 

  23. Nicolet Instrument Corp., 5225 Verona Road, Madison, Wisconsin, 53711.

    Google Scholar 

  24. Digilab Inc., 237 Putnam Avenue, Cambridge, Massachusetts, 02139.

    Google Scholar 

  25. ID AC Division of Carson Systems, Inc., 4630 Campus Drive, Newport Beach California, 92660.

    Google Scholar 

  26. H. DeLouis, Fourier transformation of a 106 samples interferogram, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 145.

    Google Scholar 

  27. J. Connes, Computing problems in Fourier spectroscopy, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Griffiths, P.R. (1978). Fourier Transform Infrared Spectrometry: Theory and Instrumentation. In: Griffiths, P.R. (eds) Transform Techniques in Chemistry. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2403-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2403-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2405-8

  • Online ISBN: 978-1-4684-2403-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics