Skip to main content

Applications of the FFT in Electrochemistry

  • Chapter
Transform Techniques in Chemistry

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Most modern electroanalytical techniques are basically electrochemical relaxation measurements (ERM), in which one observes a time-varying response from some type of electrochemical cell to an applied perturbation such as current, potential, or charge. The observed relationship between the response and the perturbation is known as the transfer function and provides analytical data, kinetic information, and/or mechanistic information on a variety of processes that can occur in the electrode, in the electrolyte bulk, or in the interfacial regions. Perhaps the most common experiment is one in which a cell voltage perturbation is created and the cell current response is measured. Typical techniques that fall into this category are DC, AC, and pulse polarography, linear sweep and triangular wave voltammetry, and potential step chronoamperometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Smith, Anal. Chem. 48, 517A (1976).

    Google Scholar 

  2. D. E. Smith, Crit. Rev. Anal. Chem. 2, 247 (1971).

    Article  Google Scholar 

  3. E. R. Brown, T. G. McCord, D. E. Smith, and D. D. DeFord, Anal Chem. 38, 1119 (1966).

    Article  CAS  Google Scholar 

  4. E. R. Brown, D. E. Smith, and G. L. Booman, Anal. Chem. 40, 1411 (1968).

    Article  CAS  Google Scholar 

  5. E. R. Brown, H. L. Hung, T. G. McCord, D. E. Smith, and G. L. Booman, Anal. Chem. 40, 1424 (1968).

    Article  CAS  Google Scholar 

  6. D. E. Smith, in: Electroanalytical Chemistry, Vol. 1, pp. 1–155 ( A. J. Bard, ed.), Marcel Dekker, New York, 1966.

    Google Scholar 

  7. M. Sluyters-Rehbach and J. H. Sluyters, in: Electroanalytic Chemistry, Vol. 4, pp. 1–128 ( A. J. Bard, ed.), Marcel Dekker, New York, 1970.

    Google Scholar 

  8. S. C. Creason, J. W. Hayes, and D. E. Smith, Electroanal. Chem. 47, A1 (1973).

    Article  Google Scholar 

  9. D. E. Smith, in: Information Chemistry: Computer Assisted Chemical Research Design, pp. 125–142 ( H. B. Mark, Jr., and S. Fujiwara, eds.), University of Tokyo Press, Tokyo, Japan, 1975.

    Google Scholar 

  10. D. E. Smith, in: Topics in Pure and Applied Electrochemistry, pp. 43–67, SAEST, Karaikudi, India, 1975.

    Google Scholar 

  11. A. A. Pilla, J. Electrochem. Soc. 117, 467 (1970).

    Article  CAS  Google Scholar 

  12. K. Doblhofer and A. A. Pilla, J. Electroanal. Chem. 39, 91 (1971).

    Article  Google Scholar 

  13. N. Weiner, Nonlinear Problems in Random Theory, MIT Press, Cambridge, Massachusetts, 1958.

    Google Scholar 

  14. D. E. Smith, Anal. Chem. 48, 221A (1976).

    Google Scholar 

  15. D. E. Glover, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois, (1973).

    Google Scholar 

  16. S. C. Creason, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois, (1973).

    Google Scholar 

  17. J. E. B. Randies and K. W. Somerton, Trans. Faraday Soc. 48, 937, 951 (1952).

    Article  Google Scholar 

  18. S. C. Creason and D. E. Smith, Anal. Chem. 45, 2401 (1973).

    Article  CAS  Google Scholar 

  19. R. deLeeuwe, M. Sluyters-Rehbach, and J. H. Sluyters, Electrochim. Acta 12, 1593 (1967).

    Article  CAS  Google Scholar 

  20. R. deLeeuwe, M. Sluyters-Rehbach, and J. H. Sluyters, Electrochim. Acta 14, 1183 (1969).

    Article  CAS  Google Scholar 

  21. H. Kojima and S. Fujiwara, Bull. Chem. Soc. Japan 44, 2158 (1971).

    Article  CAS  Google Scholar 

  22. D. E. Glover and D. E. Smith, Anal. Chem. 45, 1869 (1973).

    Article  CAS  Google Scholar 

  23. S. C. Creason and D. E. Smith, J. Electroanal. Chem. 36, A1 (1972).

    Article  Google Scholar 

  24. S. C. Creason and D. E. Smith, J. Electroanal. Chem. 40, A1 (1972).

    Article  Google Scholar 

  25. J. W. Hayes, D. E. Glover, D. E. Smith, and M. W. Overton, Anal. Chem. 45, 277 (1973).

    Article  CAS  Google Scholar 

  26. K. R. Bullock and D. E. Smith, Anal. Chem. 46, 1069 (1974).

    Article  CAS  Google Scholar 

  27. J. W. Hayes, D. E. Smith, I. Ruzik, J. R. Delmastro, and G. L. Booman, J. Electronal. Chem. 51, 245, 269 (1974).

    Article  CAS  Google Scholar 

  28. D. L. Rabenstein and R. J. Kula, J. Am. Chem. Soc. 91, 2492 (1969).

    Article  CAS  Google Scholar 

  29. T. Rohko, M. Kogoma, and S. Aoyagi, J. Electroanal. Chem. 38, 45 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Griffiths, P.R. (1978). Applications of the FFT in Electrochemistry. In: Griffiths, P.R. (eds) Transform Techniques in Chemistry. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2403-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2403-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2405-8

  • Online ISBN: 978-1-4684-2403-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics