Skip to main content

Neurochemical Changes Elicited by Stress

Behavioral Correlates

  • Chapter
Psychopharmacology of Aversively Motivated Behavior

Abstract

The response of an organism to environmental stimulation is largely dependent upon the potential consequences of the stimuli on the organism’s well being. If the stimulation is not associated with either alimentary or aversive consequences, then habituation should occur without the organism experiencing any adverse effects. However, when stimulation threatens biological equilibrium, then adaptive mechanisms need to be called upon in order to resurrect the original state of affairs. As suggested by Barry and Buckley (1966), the term stress should be considered as stimulation that requires behavioral and/or physiological adjustments.

Supported by grant A9845 from the National Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeelen, J. H. F. v., 1974, Genotype and cholinergic control of exploratory behaviour in mice, in “The Genetics of Behaviour” (J.H.F.v. Abeelen, ed.), pp. 347–374, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Abeelen, J. H. F. v., and Strijbosch, H., 1969, Genotype-dependent effects of scopolamine and eserine on exploratory behavior in mice, Psychopharmacologia 16: 81–88.

    Google Scholar 

  • Abeelen, J. H. F. v., Smits, A. J. M., and Raaijmakers, W. G. M., 1970, Central location of a genotype-dependent cholinergic mechanism controlling exploratory behavior in mice, Psychopharmacologia 19: 324–328.

    Google Scholar 

  • Akiskal, H. S., and McKinney, W. T., 1973, Depressive disorders: Toward a unified hypothesis, Science 182: 20–29.

    Google Scholar 

  • Akiskal, H. S., and McKinney, W. T., 1975, Overview of recent research in depression. Integration of ten conceptual models into a comprehensive clinical frame, Arch. Gen. Psychiatry 32: 285–305.

    Google Scholar 

  • Al-Ani, A. T., Tunnicliff, G., Rick, G., and Kerkut, G. A., 1970, GABA production, acetylcholinesterase activity and biogenic amine levels in brain for mouse strains differing in spontaneous activity and reactivity, Life Sci. 9: 21–27.

    Google Scholar 

  • Andén, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurones to the telencephalon and diencephalon Acta Physiol. Scand. 67: 313–326.

    Google Scholar 

  • Angrist, B. M., Shopsin, B., and Gershon, S., 1971, The comparative psychotomimetic effects of stereoisomers of amphetamine, Nature (London) 234: 152–154.

    Google Scholar 

  • Angrist, B. M., Sathananathan, G., Wilk, S., and Gershon, S., 1973, Behavioural and biochemical effects of L-Dopa in psychiatric patients, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 991–994, Pergamon Press, Oxford.

    Google Scholar 

  • Anisman, H., 1973, Cholinergic mechanisms and alterations in behavioral suppression as factors producing time dependent changes in avoidance performance, J. Comp. Physiol. Psychol. 83: 456–477.

    Google Scholar 

  • Anisman, H., 1975a, Time dependent variations in aversively motivated behaviors: Nonasso-ciative effects of cholinergic and catecholaminergic activity, Psychol. Rev. 82: 359–385

    Google Scholar 

  • Anisman, H., 1975b, Differential effects of scopolamine and d-amphetamine on avoidance: Strain interactions, Pharmacol. Biochem. Behay. 3: 809–817.

    Google Scholar 

  • Anisman, H., 1976, Effects of scopolamine and d-amphetamine on locomotor activity before and after shock: A diallel analysis in mice, Psychopharmacology 48: 165–173.

    Google Scholar 

  • Anisman, H., and Cygan, D., 1975, Central effects of scopolamine and d-amphetamine on locomotor activity: Interaction with strain and stress variables, Neuropharmacology 14: 835–840.

    Google Scholar 

  • Anisman, H., and Kokkinidis, L., 1974, Effects of central and peripheral adrenergic and cholinergic modification on time dependent processes in avoidance performance, Behay. Biol. 10: 161–171.

    Google Scholar 

  • Anisman, H., and Waller, T. G., 1973, Effects of inescapable shock on subsequent avoidance performance: Role of response repertoire changes, Behay. Biol. 9: 331–355.

    Google Scholar 

  • Anisman, H., Wahlsten, D., and Kokkinidis, L., 1975, Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains, Pharmacol. Biochem. Behay. 3: 819–824.

    Google Scholar 

  • Aprison, M. H., and Hingtgen, J. N., 1966, Neurochemical correlates of behavior V. Differential effects of drugs on approach and avoidance behavior in rats with related changes in brain serotonin and norepinephrine, Recent Adv. Biol. Psychiat. 8: 87–100.

    Google Scholar 

  • Aprison, M. H., and Hingtgen, J. N., 1969, Brain acetylcholine and excitation in avoidance behavior, Biol. Psychiat. 1: 87–89.

    Google Scholar 

  • Aprison, M. H., and Hingtgen, J. N., 1970, Evidence of a central cholinergic mechanism functioning during drug-induced excitation in avoidance behavior, in “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn, and A. Winter, eds.), pp. 543–560, Stockholm, Forsvarets Forskning-Sansalt, Sweden.

    Google Scholar 

  • Aprison, M. H., Kariya, T., Hingtgen, J., and Toru, M., 1968, Changes in acetylcholine, norepinephrine and 5-hydroxytryptamine concentrations in several discrete brain areas of the rat during behavioral excitation, Neurochemistry 15: 1131–1139.

    Google Scholar 

  • Aprison, M. H., Hingtgen, J. N., and McBride, W. J., 1975, Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior, Fed. Proc. 34: 1813–1822.

    Google Scholar 

  • Balazovjech, I., Kvetnanskÿ, R., Harsanyi, M., and Mikulaj, L., 1976, Effect of workload on plasma dopamine-/3-hydroxylase activity and cortisol in patients with essential hypertension, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 549–555, Pergamon Press, Oxford.

    Google Scholar 

  • Barchas, J. D., and Freedman, D. X., 1963, Brain amines: Response to physiological stress, Biochem. Pharmacol. 12: 1232–1235.

    Google Scholar 

  • Barry, H., and Buckley, J. P., 1966, Drug effect on animal performance and the stress syndrome, J. Pharm. Sci. 55: 1159–1183.

    Google Scholar 

  • Bartholini, G., Stadler, H., and Lloyd, K. G., 1973, Cholinergic—dopaminergic relation in different brain structures, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 741–746, Pergamon Press, Oxford.

    Google Scholar 

  • Bartolini, A., and Pepeu, G., 1970, Effect of adrenergic blockers on spontaneous and stimulated acetylcholine output from the cerebral cortex of the cat, Pharmacol. Res. Common. 2: 23–29.

    Google Scholar 

  • Bignami, G., 1976, Nonassociative explanations of behavioural changes induced by central cholinergic drugs, Acta Neurobil. Exp. 36: 5–90.

    Google Scholar 

  • Blanchard, R. J., and Blanchard, D. C., 1970, Dual mechanisms in passive avoidance, I. Psychon. Sci. 19: 1–2.

    Google Scholar 

  • Blanchard, R. J., and Blanchard, D. C., 1971, Defensive reactions in the albino rat, Learn. Motiv. 2: 351–362.

    Google Scholar 

  • Bliss, E. L., and Ailion, J., 1971, Relationship of stress and activity to brain dopamine and homovanillic acid, Life Sci. 10: 1161.

    Google Scholar 

  • Bliss, E. L., Ailion, J., and Zwanziger, J., 1968, Metabolism of norepinephrine, serotonin, and dopamine in rat brain with stress, J. Pharmacol. Exp. Ther. 164: 122–134.

    Google Scholar 

  • Bliss, E. L., Thatcher, W., and Ailion, J., 1972, Relationship of stress to brain sertonin and 5hydroxyindoleacetic acid, J. Psychiat. Res. 9: 71–80.

    Google Scholar 

  • Bolles, R. C., 1970, Species-specific defense reactions and avoidance learning, Psychol. Rev. 77: 32–48.

    Google Scholar 

  • Bolles, R. C., 1971, Species-specific defense reactions, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 183–233, Academic Press, New York.

    Google Scholar 

  • Brain, P., 1975, What does individual housing mean to a mouse?, Life Sci. 16: 187–200

    Google Scholar 

  • Breitner, C., Picchioni, A., and Chin, L., 1963, Neurohormone levels in brain after CNS stimulation including electrotherapy, J. Neuropsychiatry 5: 153.

    Google Scholar 

  • Brookshire, K. H., Littman, R. A., and Stewart, C. N., 1961, Residua of shock trauma in the white rat: A three factor theory, Psychol. Mon. 75:10.

    Google Scholar 

  • Brown, G. M., Krigstein, E., Dankova, J., and Hornykiewicz, O., 1972, Relationship between hypothalamic and median eminence catecholamines and thyroid function, Neuroendocrinology 10: 207–217.

    Google Scholar 

  • Brown, R. M., Snider, S. R., and Carlsson, A., 1974, Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot-shock stress II. The central nervous system, J. Neur. Trans. 35: 293–305.

    Google Scholar 

  • Brush, F. R., 1971, Retention of aversively motivated behavior, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 401–465, Academic Press, New York.

    Google Scholar 

  • Brush, F. R., and Levine, S., 1966, Adrenocortical activity and avoidance learning as a function of time after fear conditioning, Physiol. Behan. 1: 309–311.

    Google Scholar 

  • Buckley, J. P., 1973, Biochemical and physiological effects of intermittent neurogenic stress, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 165–177, Publishing house of the Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Bunney, W. E., and Murphy, D. C., 1973, ‘l’he behavioral switch process and psychopathology, in “Biological Psychiatry” U. Mendels, ed.), John Wiley, New York.

    Google Scholar 

  • Bunney, W. E., Mason, J. W., Roatch, J. F., and Hamburg, D. A., 1965, A psychoendocrine study of severe psychotic depressive crises, Am. J. Psychiatry 122: 72–80.

    Google Scholar 

  • Bunney, W. E., Fawcett, J., Davis, J., and Gifford, S., 1969, Further evaluation of urinary 17OHCS in suicidal patients, Arch. Gen. Psychiatry 21: 138.

    Google Scholar 

  • Campbell, B. A., and Candland, D. K., 1961, Effects of prior shock on the emotionality of young rats in an open field, Can. J. Psychol. 15: 1–5.

    Google Scholar 

  • Carlsson, A., 1965, Drugs which block the storage of 5-hydroxytryptamine and related amines, in “5-Hydroxytryptamine and Related Indolalkylamines, Handbook of Experimental Pharmacology, Vol. 19” ( V. Erspamer, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Carr, L. A., and Moore, K. E., 1968, Effects of reserpine and a-methyltyrosine on brain catecholamines and the pituitary-adrenal response to stress, Neuroendocrinology 3: 285–302.

    Google Scholar 

  • Carroll, B., and Davies, B., 1970, Clinical associations of 11-hydroxycorticoid suppression and non-suppression in severe depressive illnesses, Br. Med. J. 1: 789.

    Google Scholar 

  • Chattopadhyay, S., and Uniyal, M., 1975, The interaction of stress and corticosteroid on the hypothalamus as reflected by Gamma aminobutyric acid content. Proceedings of the Fifth Asia and Oceania Congress of Endocrinology.

    Google Scholar 

  • Ciaranello, R. D., Dornbusch, J. N., and Barchas, J. D., 1972a, Regulation of adrenal phenylethanolamine-n-methyltransferase activity in three inbred mouse strains, Mol. Pharmacol. 8: 511–520.

    Google Scholar 

  • Ciaranello, R. D., Barchas, R., Kessler, S., and Barchas, J. D., 1972b, Catecholamines: Strain differences in biosynthetic enzyme activity in mice, Life Sci. 11: 565–577.

    Google Scholar 

  • Conner, R. L., 1972, Hormones, biogenic amines and aggression, in “Hormones and Behavior” (S. Levine, ed.), pp. 109–233, Academic Press, New York.

    Google Scholar 

  • Coover, G. D., Ursin, H., and Levine, S., 1973, Plasma corticosterone levels during active avoidance Tearing in rats, J. Comp. Physiol. Psychol. 82: 170–174.

    Google Scholar 

  • Conodi, H., Fuxe, K., and Hokfelt, T., 1968, The effect of immobilization stress on the activity of central monoamine neurons, Life Sci. 7:107–112.

    Google Scholar 

  • Davies, B., Carroll, B. J., and Mowbray, R. M., 1972, “Depressive Illness: Some Research Studies,” Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  • Davis, M., and Sheard, M. H., 1974, Habituation and sensitization of the rat startle response: Effects of raphé lesions, Physiol. Behay. 12: 425–433.

    Google Scholar 

  • Deffenu, G., Bartolini, A., and Pepeu, G., 1970, Effect of amphetamine on cholinergic systems of the cerebral cortex of the cat, in “Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.), pp. 357–368, Raven Press, New York.

    Google Scholar 

  • Douglas, D., and Anisman, H., 1975, Learned helplessness or expectancy incongruency: Effects of failure on subsequent performance, J. Exp. Psychol. 1: 411–417.

    Google Scholar 

  • Ebel, A., Hermetet, J. C., and Mandel, P., 1973, Comparative study of acetylcholinesterase and choline acetyltransferase enzyme activity in brain of DBA and C57 mice, Nature (London), New Biol. 242: 56–57.

    Google Scholar 

  • Eleftheriou, B. E., 1974, A gene influencing hypothalamic norepinephrine levels in mice, Brain Res. 70: 538–540.

    Google Scholar 

  • Eleftheriou, B. E., and Church, R. L., 1968, Brain levels of serotonin and norepinephrine in mice after exposure to aggression and defeat, Physiol. Behay. 3: 977–980.

    Google Scholar 

  • Fekete, M., Herman, J., Palkovits, M., and Stark, E., 1976, ACTH induced changes in the transmitter amine concentration of individual brain nuclei of the rat, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 69–75, Pergamon Press, Oxford.

    Google Scholar 

  • Fibiger, H. C., Phillips, A. G., and Zis, A. P., 1974, Deficits in instrumental responding after 6-hydroxydopamine lesions of the nigro-neostriatial dopaminergic projection, Pharmacol. Biochem. Behay. 2: 87–96.

    Google Scholar 

  • Fibiger, H. C., Zis, A. P., and Phillips, G., 1975, Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs, Eur. J. Pharmacol. 30: 309–314.

    Google Scholar 

  • Foote, W. E., Lieb, J. P., Martz, R. L., and Gordon, M. W., 1972, Effect of hydrocortisone on single unit activity in midbrain raphe, Brain Res. 41: 242–244.

    Google Scholar 

  • Frontali, M., Amorico, L., de Acetis, L., and Bignami, G., 1976, A pharmacological analysis of processes underlying differential responding: A review and further experiments with scopolamine, amphetamine, LSD-25, chlordiazepoxide, physostigmine and chlorpromazine, Behay. Biol. 18: 1–74.

    Google Scholar 

  • Fuxe, K., Hokfelt, T., and Ungerstedt, U., 1968, Localization of indolealkylamines in C.N.S., in “Advances in Pharmacology” (S. Garattini and P. A. Shore, eds.), Academic Press, New York.

    Google Scholar 

  • Ganong, W. F., 1974, The role of catecholamines and acetylcholine in the regulation of endocrine function, Life Sci. 15: 1401–1414.

    Google Scholar 

  • Ganong, W. F., Kramer, N., Reid, I. A., Boryczka, A. T., and Shackelford, R., 1976, Inhibition of stress-induced ACTH secretion by norepinephrine in the dog: Mechanisms and site of action, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 139–143, Pergamon Press, Oxford.

    Google Scholar 

  • Gellhorn, E., 1957, “Autonomic imbalance and the hypothalamus,” University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Gibbons, J. L., 1964, Corticol secretion rate in depressive illness, Arch. Gen. Psychiatry 10: 573–575.

    Google Scholar 

  • Gibbons, J. L., and Miltugh, P. R., 1962, Plasma cortisol in depressive illness, J. Psychiat. Res. 1: 162–171.

    Google Scholar 

  • Glazer, H. I., Weiss, J. M., Pohorecky, L. A., and Miller, N. E., 1975, Monoamines as mediators of avoidance-escape behavior, Psychosom. Med. 37: 535–543.

    Google Scholar 

  • Glowinski, J., Kopin, I. J., and Axelrod, J., 1965, Metabolism of 3H-norepinephrine in rat brain, J. Neurochem. 12:25–30.

    Google Scholar 

  • Goldberg, M. E., lnsalaco, J. R., Hefner, M. A., and Salama, A. I., 1973, Effect of prolonged isolation on learning, biogenic amine turnover and aggressive behavior in three strains of mice, Neuropharmacology 12: 1049–1058.

    Google Scholar 

  • Gordon, R., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1966, Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold, J. Pharmacol. Exp. Ther. 153: 440–447.

    Google Scholar 

  • Hamburg, D A, Hamburg, B. A., and Barchas, J. D., 1975, Anger and depression in perspective of behavioral biology, in “Emotions: Their Parameter and Measurement” (L. Levi, ed.), pp. 235–278, Raven Press, New York.

    Google Scholar 

  • Hauger-Klevene, J. H., and Moyans, M. B., 1973, ACTH-induced alterations in catecholamine metabolism in man, J. Clin. Endocrinol. Metab. 36: 679–683.

    Google Scholar 

  • Hendley, E. D., Moisset, B., and Welch, B. C., 1973, Catecholamine uptake in cerebral cortex: Adaptive change induced by fighting, Science 180: 1050–1052.

    Google Scholar 

  • Hillarp, N. A., Fuxe, K., and Dahlstrom, A., 1966, Adrenergic mechanisms in the nervous system. Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18: 727–742.

    Google Scholar 

  • Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., and Gaff, T. M., 1976, Cholinergic changes during conditioned suppression in rats, Science 193: 332–334.

    Google Scholar 

  • Hudgens, R., Morrison, J., and Barchha, R., 1967, Life events and onset of primary effective disorders, Arch. Gen. Pstichiat. 16: 134–145.

    Google Scholar 

  • Huszti, Z., and Kenessey, A, 1976, 3H-tyrosine incorporation into proteins and catecholamines in immobilized rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 377–386, Pergamon, Oxford.

    Google Scholar 

  • Huttenen, M. 0., 1971, Persistent alteration of turnover of brain noradrenaline in the offspring of rats subjected to stress during pregnancy, Nature 230: 53–55.

    Google Scholar 

  • Ingenito, A. J., and Bonnycastle, 1967, The effect of exposure to heat and cold upon rat brain catecholamine and 5-hydroxytryptamine levels, Can. J. Physiol. Pharm. 45: 733–743.

    Google Scholar 

  • Ishii, Y., Homma, M., and Yhoshigawa, A., 1975, Effect of a dopamine-beta-hydroxylase inhibitor on tissue catecholamine levels in spontaneously hypertensive rats subjected to immobilization—cold stress, Neuropharmacology 14: 155–157.

    Google Scholar 

  • Iversen, L. L., and Glowinski, J., 1966, Regional studies of catecholamines in the rat brain II, J. Neurochem. 13: 671–682.

    Google Scholar 

  • Javoy, F., Thierry, A. M., Kety, S. S., and Glowinski, J., 1968, The effect of amphetamine on the turnover of brain norepinephrine in normal and stressed rats, Commun. Behay. Biol. IA:43–48.

    Google Scholar 

  • Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1974, Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra, Brain Res. 68: 253–260.

    Google Scholar 

  • Jones, F. D., Maas, J. W., Kekirmenjian, H., and Fawcett, J., 1973, Urinary catecholamine metabolites during behavioral changes in a patient with manic–depressive cycles, Science 179: 300–302.

    Google Scholar 

  • Karczmar, A. G., Scudder, C. L, and Richardson, D. L., 1973, Interdisciplinary approach to the study of behavior in related mice types, in “Chemical Approaches to Brain Function” (S. Ehrenpreis, and I. J. Kopin, eds.), pp. 160–244, Academic Press, New York.

    Google Scholar 

  • Kato, L., Gozsy, B., Roy, P. B., and Groh, V., 1967, Histamine, serotonin, epinephrine and norepinephrine in the rat brain following convulsions, Int. J. Neuropsychiatry 3: 46.

    Google Scholar 

  • Keim, K. L., and Sigg, E. B., 1976, Physiological and biochemical concomitants of restraint stress in rats, Pharmacol. Biochem. Behay. 4: 289–297.

    Google Scholar 

  • Kenessey, A., and Huszti, Z., 1976, The effect of monoamine oxidase inhibitors on the synthesis and degradation of catecholamines in immobilized rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 331–340, Pergamon Press, Oxford.

    Google Scholar 

  • Kessler, S., Ciaranello, R. D., Shire, J. G. M., and Barchas, J. D., 1972, Genetic variation in activity of enzymes involved in synthesis of catecholamines, Proc. Natl. Acad. Sci. 69: 2448–2450.

    Google Scholar 

  • Kety, S. S., 1972, Toward hypotheses for a biochemical component in the vulnerability to schizophrenia, Sem. Psychiat. 4: 233–238.

    Google Scholar 

  • Kety, S. S., 1959, Biochemical theories of schizophrenia. A two-part critical review of current theories and the evidence used to support them, Science 125: 1528–1532, 1590–1596

    Google Scholar 

  • Kety, S. S., and Schildkraut, J. J., 1967, Biogenic amines and emotion, Science 156: 21–30

    Google Scholar 

  • Klein, D. F., and Davis, J. M., 1969, “Diagnosis and Drug Treatment of Psychiatric Disorder,” Vol. 52, p. 138, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kobayashi, R. M., Palkovits, M., Kizer, J. S., Jacobowitz, D. M., and Kopin, I. J., 1976, Selective alterations of catecholamines and tyrosine hydroxylase activity in the hypothalamus following acute and chronic stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 28–38, Pergamon Press, Oxford.

    Google Scholar 

  • Korf, J., 1976, Locus coeruleus, noradrenaline metabolism and stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 105–110, Pergamon Press, Oxford.

    Google Scholar 

  • Korf, J., Aghajanian, G. K., and Roth, R. H., 1973a, Increased turnover of norepinephrine in the rat cerebral cortex during stress: Role of locus coeruleus, Neuropharmacology 12: 933–938.

    Google Scholar 

  • Korf, J., Aghajanian, G. K., and Roth, R. H., 1973b, Stimulation and destruction of the locus coeruleus: Opposite effects on 3-methoxy-4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex, Eur. j. Pharmacol. 21: 305–310.

    Google Scholar 

  • Kujalovâ, V., Mikiska, A., and Hyska, P., 1976, Changes in catecholamine excretion in students during examination, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 583–587, Pergamon Press, Oxford.

    Google Scholar 

  • Kvetnanskÿ, R., Mitro, A., Palkovits, M., Vigas, M., Albrecht, I., Torda, T., and Mikulaj, L., 1975, Effects of stress on catecholamines in individual hypothalamic nuclei and ACTH in rats. Symposium of the International Society of Psychoendocrinology, Visegrad.

    Google Scholar 

  • Kvetnansky, R., Mitro, A., Palkovits, M., Brownstein, M., Torda, T., Vigas, M., and Mikulaj, L., 1976, Catecholamines in individual hypothalamic nuclei in stress rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 39–50, Pergamon Press, Oxford.

    Google Scholar 

  • Ladisich, W., 1974, Effect of stress upon serotonin metabolism in various regions of the rat brain, Arzheim Forsch 24: 1025–1027.

    Google Scholar 

  • Langos, J., Kvetnansky, R., Blazicek, P., Novotny, J., Vencel, P., Burdiga, A., and Mikulaj, L., 1976, Plasma renin and dopamine-ß-hydroxylase activity and catecholamine excretion in man during stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 567–573, Pergamon Press, Oxford.

    Google Scholar 

  • Lee, C. H., Morita, A., Saito, H., and Takagi, K., 1973, Changes in catecholamine levels of mouse brain during oscillation-stress, Chem. Pharm. Bull. (Tokyo) 21: 2768–2770.

    Google Scholar 

  • Leff, M. J., Roatch, J. F., and Bunney, W. E., 1970, Environmental factors preceding the onset of severe depressions, Psychiatry 33: 298–311.

    Google Scholar 

  • Levi, L., 1967, “Emotional Stress,” Karger, New York.

    Google Scholar 

  • Levi, L., 1975, “Emotions: ”Their Parameters and Measurement,“ Raven Press, New York. Levine, S., 1972, ”Hormones and Behavior,“ Academic Press, New York.

    Google Scholar 

  • Levine, S., and Brush, F. R., 1967, Adrenocortical activity and avoidance learning as a function of time after avoidance training, Physiol. Behay. 2: 385–388.

    Google Scholar 

  • Loizou, L. A., 1969, Projection of the nucleus locus coeruleus in the albino rats, Brain Res. 15: 563–567.

    Google Scholar 

  • Maas, J. W., and Mednieks, M., 1971, Hydrocortisone effected increase of norepinephrine uptake by brain slices, Science 171: 178–179.

    Google Scholar 

  • Maas, J. W., Dekirmenjian, H., and Jones, F., 1973, The identification of depressed patients who have a disorder of NE metabolism and/or disposition, in “Frontiers in Catecholamine Research,” (E. Usdin, and S. Snyder, eds.), pp. 1091–1096, Pergamon Press, New York.

    Google Scholar 

  • Mandel, P., Ayad, G., Hermetet, J. C., and Ebel, A., 1974, Correlation between choline acetyltransferase activity and learning ability in different mice strains and their offspring, Brain Res. 72: 65–70.

    Google Scholar 

  • Mandel, P., Ebel, A., Mack, G., and Kempf, E., 1974, Neurochemical correlates of behaviour in inbred strains of mice, in “The Genetics of Behaviour,” (J. H. F. v. Abeelen, ed.), pp. 397–415, North-Holland, Amsterdam.

    Google Scholar 

  • Maynert, E. W., and Levi, R., 1964, Stress-induced release of brain norepinephrine and its inhibition by drugs, J. Pharmacol Exp. Ther. 143: 90–95.

    Google Scholar 

  • McBride, W. J., Hingtgen, J. N., and Aprison, M. H., 1976, Neurochemical correlates of behavior: Levels of amino acids in four areas of the brain of the rat during drug-induced behavioral excitation, Pharmacol. Biochem. Behay. 4: 53–57.

    Google Scholar 

  • McCann, S. M., Ajika, K., Fawcett, C. P., Hefco, E., Illner, P., Negro-Villar, A., Orias, R., Watson, J. T., and Krulich, L., 1973, Hypothalamic control of the adenohypophyseal response to stress by releasing and inhibitory neurohormones, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 67–77, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Mikas, Z., Kolesar, J., Petrovicova, L., Butykova, L., and Hagarova, Z., 1976, Physical load as a stress factor in patients with myocardial infarction, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 557–561, Pergamon Press, Oxford.

    Google Scholar 

  • Mikulaj, L., Mitro, A., Murgas, K., and Dobrakovova, M., 1973, Adrenocortical activity during and after stress with respect to adaptation, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 115–127, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Mitler, M. M., Cohen, H. B., Grettan, J., Dominic, J., Deguchi, T., Barchas, J. D., Dement, W. C., and Kessler, S., 1973, Sleep and serotonin in two strains of Mus musculus, Pharm. Biochem. Behay. 1: 507–510.

    Google Scholar 

  • Modigh, K., 1973, Effects of isolation and fighting in mice on the rate of synthesis of noradrenaline, dopamine, and 5-hydroxytryptamine in the brain, Psychopharmacologin 33: 1–17.

    Google Scholar 

  • Modigh, K., 1974, Effects of social stress on the turnover of brain catecholamines and 5hydroxytryptamine in mice, Acta Pharmacol. Toxicol. 34: 97–105.

    Google Scholar 

  • Modigh, K., 1976, Influence of social stress on brain catecholamine mechanisms, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 17–28, Pergamon Press, Oxford.

    Google Scholar 

  • Moisset, T. B., Hendley, E. D., Welch, B. L., 1975, Norepinephrine uptake by cerebral synaptosomes of mouse: Strain differences, Brain Res. 92: 157–164.

    Google Scholar 

  • Moore, K. E., and Lariviere, E. W., 1963, Effects of d-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain, Biochem. Pharmacol. 12:1283-1288.

    Google Scholar 

  • Moore, K. E., and Lariviere, E. W., 1964, Effects of stress and d-amphetamine on rat brain catecholamines, Biochem. Pharmacol. 13: 1098–1100.

    Google Scholar 

  • Morgan, W. W., Rudeen, P. K., and Pfeil, K. A., 1975, Effect of immobilization stress on serotonin content and turnover in regions of the rat brain, Life Sci 17: 143–150

    Google Scholar 

  • Morrison, J., Hudgens, R., and Barchha, R., 1968, Life events and psychiatric illness, Br. J. Psychiat. 114: 423–432.

    Google Scholar 

  • Murphy, D. L., and Redmond, D. E., Jr., 1975, The catecholamines: Possible role in affect, mood, and emotional behavior in man and animals, in “Catecholamines and Behavior” (A. J. Friedhoff, ed.), pp. 73–117, Plenum Press, New York.

    Google Scholar 

  • Nemeth, S., 1973, “Hormones, Metabolism and Stress: Recent Progress and Perspectives,” Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Nielson, H. C., and Fleming, R. M., 1968, Effect of electroconvulsive shock and prior stress on brain amine levels, Exp. Neurol. 20–21.

    Google Scholar 

  • Nishikawa, I., Kajiwara, Y., Kono, Y., Sano, T., Nagasaki, N., Tanaka, M., and Noda, Y., 1974, Isolation-induced general behavioral changes and brain monoamine levels in rat, Kurume Med. J. 21: 117–121.

    Google Scholar 

  • Nistri, A., Bartolini, A., Deffenu, G., and Pepeu, G., 1972, Investigations into the release of acetylcholine from the cerebral cortex of the cat: Effects of amphetamine, of scopolamine and of septal lesions, Neuropharmacology 11: 665–674.

    Google Scholar 

  • Oliverio, A., 1967, Contrasting effects of scopolamine on mice trained simultaneously with two different schedules of avoidance conditioning, Psychopharmacologia 11: 39–51.

    Google Scholar 

  • Oliverio, A., 1974, Genetic factors in the control of drug effects on the behaviour of mice, in “The Genetics of Behavior” U. H. F. v. Abeelen, ed.), pp. 375–395, North-Holland, Amsterdam.

    Google Scholar 

  • Oliverio, A., Eleftheriou, B. E., and Bailey, D. W., 1973, Exploratory activity: Genetic analysis of its modification by scopolamine and amphetamine, Physiol. Behay. 10: 893–899

    Google Scholar 

  • Otto, U., and Paalzow, L., 1975, Effect of stress on the pharmacokinetics of sodium salicylate and quinidine sulphate in rats, Acta Pharmacol. Toxicol. 36: 415–426.

    Google Scholar 

  • Palkovits, M., Brownstein, M., Kizer, J. S., Saavedra, J. M., and Kopin, I. J., 1976, Effect of stress on serotonin and tryptophan hydroxylase activity of brain nuclei, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 51–59, Pergamon Press, Oxford.

    Google Scholar 

  • Paré, W. P., and Livingston, A., 1970, Brain norepinephrine and stomach ulcers in rats exposed to chronic conflict, Physiol. Behay. 5: 215–220.

    Google Scholar 

  • Paré, W. P., and Temple, L. J., 1974, Food deprivation, shock stress and stomach lesions in the rat, Physiol. Behay. 11: 371–375.

    Google Scholar 

  • Paulsen, E. C., Hess, S. M., 1963, The rate rate of synthesis of catecholamines following depletion in guinea pig brain and heart, J. Neurochem.10: 453.

    Google Scholar 

  • Paykel, E., Myers, J., and Dienelt, M., 1970, Life events and depression, Arch. Gen. Psychiat. 21: 753–760.

    Google Scholar 

  • Pepeu, G., and Bartolini, A., 1968, Effect of psychoactive drugs on the output of acetylcholine from the cerebral cortex of the cat, Eur. J. Pharmacol. 4: 254–263.

    Google Scholar 

  • Post, R. M., and Goodwin, F. K., 1973, Simulated behavior states: An approach to specificity in psychobiological research, Biol. Psychiat. 7: 237–254.

    Google Scholar 

  • Prange, A. Z., Lara, P. P., Wilson, I. C., Alltop, L. B., and Breese, G. R., 1972, Effects of thyortropin-releasing hormone in depression, Lancet Nov. 11: 999–1002.

    Google Scholar 

  • Pryor, G. T., Peache, S., and Scott, M. K., 1972, The effect of repeated electroconvulsive shock on avoidance conditioning and brain monoamine oxidase activity, Physiol. Behay. 9: 623–628.

    Google Scholar 

  • Ramey, E. R., Goldstein, M. S., and Levine, R., 1971, Action of norepinephrine and adrenal cortical steroids on blood pressure and work performance of adrenalectomized dogs, Am. J. Physiol. 165: 450–455.

    Google Scholar 

  • Ray, O. S., and Barrett, R. J., 1975, Behavioral, pharmacological and biochemical analysis of genetic differences in rats, Behay. Biol. 15: 391–417.

    Google Scholar 

  • Rech, R. H., Tilson, H. A., and Marquis, W. J., 1975, Adaptive changes in behavior after repeated administration of various psychoactive drugs, in “Neurobiological Mechanisms of Adaptation and Behavior” (A. J. Mandell, ed.), pp. 163–286, Raven Press, New York.

    Google Scholar 

  • Richardson, J. S., 1974, Basic concepts of psychopharmacological research as applied to the psychopharmacological analysis of the amygdala, Acta Neurobiol. Exp. 34: 543–562.

    Google Scholar 

  • Riege, W. H., and Morimoto, H., 1970, Effects of chronic stress and differential environments upon brain weights and biogenic amine levels in rats, J. Comp. Physiol. Psychol. 71: 396–404.

    Google Scholar 

  • Rose, S.P.R., 1973, What do you mean: The cause of schizophrenia, in “Biochemistry and Mental Illness” (L. L. Iversen, S.P.R. Rose, and B. Pearse, eds.), The Biochemical Society, London.

    Google Scholar 

  • Rosecrans, J. A., 1969, Brain amine changes in stressed and normal rats pretreated with various drugs, Arch. Int. Pharmacodyn. 180: 460–470.

    Google Scholar 

  • Ross, S. B., Wetterberg, L., and Myrhed, M., 1973, Genetic control of plasma dopamine-ßhydroxylase, Life Sci. 12: 529–532.

    Google Scholar 

  • Sachar, E. J., and Coppen, A. J., 1975, Biological aspects of affective psychoses, Biol. Brain Dysfunction 3: 215–245.

    Google Scholar 

  • Sachar, E. J., Hellman, L., Fukushima, D., and Gallagher, T. F., 1970, Cortisol production in depressive illness, Arch. Gen. Psychiat. 23: 289.

    Google Scholar 

  • Saito, H., Morita, A., Miyazaki, I., and Takagi, K., 1976, Comparison of the effects of various stresses on biogenic amines in the central nervous system and animal symptoms, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 95–103, Pergamon Press, Oxford.

    Google Scholar 

  • Scapagnini, U., Annunziato, L., and Preziosi, P., 1973, Role of brain norepinephrine in stress regulation, in “Hormones, Metabolism and Stress: Recent Progress and Perspectives” (S. Nemeth, ed.), pp. 25–36, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders—A review of supporting evidence, Am. J. Psychiat. 122: 509–522.

    Google Scholar 

  • Schildkraut, J. J., 1973, Neuropharmacology of the affective disorders in “Annual Review of Pharmacology” (H. W. Elliot, R. Okun, and R. George, eds.), Vol. 13, 427–455, G. Banta and Co., England.

    Google Scholar 

  • Segal, D. S., 1975, Behavioral and neurochemical correlates of repeated d-amphetamine administration, in “Neurobiological Mechanisms of Adaptation and Behavior” (A. J. Mandell, ed.), pp. 247–262, Raven Press, New York.

    Google Scholar 

  • Segal, D. S., Knapp, S., Kuczenski, R. T., and Mandell, A. J., 1973, The effects of environmental isolation on behavior and regional rat brain tyrosine hydroxylase and tryptophan hydroxylase activity, Behar). Biol. 8: 47–53.

    Google Scholar 

  • Seligman, M.E.P., 1974, Depression and learned helplessness, in “The psychology of depression: Contemporary theory and research” (R. J. Freedman and M. M. Katz, eds.), Winston Wiley, New York.

    Google Scholar 

  • Seligman, M.E.P., 1975, “Helplessness: On Depression, Development and Death,” W. H. Freeman, San Francisco

    Google Scholar 

  • Seligman, M.E.P., Maier, S. F., and Solomon, R. L., 1971, Unpredictable and uncontrollable aversive events, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 347–400, Academic Press, New York.

    Google Scholar 

  • Seligman, M.E.P., Klein, D. C., and Miller, W. R., 1974, Depression, in “Handbook of Behavior Therapy” (H. Leitenberg, ed.), Appleton-Century-Crofts, New York

    Google Scholar 

  • Selye, H., 1952, “The Story of the Adaptation Syndrome,” Acta Inc., Montreal. Siegal, S., 1975, Conditioning insulin effects, J. Comp. Physiol. Psychol. 89: 189–199.

    Google Scholar 

  • Slater, E., and Roth, M., 1969, “Mayer Gross Clinical Psychiatry,” Williams and Wilkens, Baltimore.

    Google Scholar 

  • Snyder, S. H., 1974, Catecholamines as mediators of drug effects in schizophrenia, in “The Neurosciences: Third Study Program” (F. O. Schmitt and F. G. Worden, eds.), pp. 721–732, MIT Press, Cambridge.

    Google Scholar 

  • Soderberg, U., 1967, Neurophysiological aspects of stress, in “Emotional Stress” (L. Levi, ed.), Karger, New York.

    Google Scholar 

  • Stadler, H., Lloyd, K. G., and Bartholini, G., 1974, Dopaminergic inhibition of striatal cholinergic neurons: Synergistic blocking action of y-butyrolactone on neuroleptic drugs, Arch. Pharmacol. 283: 129–134.

    Google Scholar 

  • Stolk, J. M., Conner, R. L., and Barchas, J. D., 1974a, Social environment and brain biogenic amine metabolism in rats, J. Comp. Physiol. Psychol. 87: 203–207.

    Google Scholar 

  • Stolk, J. M., Conner, R. L., Levine, S., and Barchas, J. D., 1974b, Brain norepinephrine metabolism and shock induced fighting behavior in rats: Differential effects of shock and fighting on the neurochemical response to a common footshock stimulus, J. Pharm. Exp. Ther. 190: 193–209.

    Google Scholar 

  • Stone, E. A., 1971, Hypothalamic norepinephrine after acute stress, Brain Res. 35: 260–263

    Google Scholar 

  • Stone, E. A., 1973, Adrenergic activity in rat hypothalamus following extreme muscular exertion, Am. J. Physiol. 224: 165–169.

    Google Scholar 

  • Stone, E. A., 1975a, Stress and catecholamines, in “Catecholamines and Behavior, Vol. II” (A. J. Friedhoff, ed.), pp. 31–72, Plenum Press, New York.

    Google Scholar 

  • Stone, E. A., 19756, Effect of stress on sulfated glycol metabolites of brain norepinephrine, Life Sci. 16: 1725–1730.

    Google Scholar 

  • Suits, E., and Isaacson, R. L., The effects of scopolamine hydrobromide on the one-way and two-way avoidance learning in rats, Int. J. Neuropharmacol. 7: 441–446.

    Google Scholar 

  • Swonger, A. K., and Rech, R. H., 1972, Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y-maze, J. Comp. Physiol. Psychol. 81: 509–522.

    Google Scholar 

  • Telegdy, G., and Vermes, I., 1976, Changes induced by stress in the activity of the serotoninergic system in limbic brain structures, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 145–156, Pergamon Press, Oxford.

    Google Scholar 

  • Thierry, A. M., 1973, Effects of stress on the metabolism of serotonin and norepinephrine in the central nervous system of the rat, in “Hormones, Metabolism and Stress: Recent Progress and Perspectives” (S. Nemeth, ed.), pp. 37–53, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Thierry, A. M., Fekete, M., and Glowinski, J., 1968a, Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat, II. Modifications of serotonin metabolism, Eur. J. Pharmacol. 4: 384–389.

    Google Scholar 

  • Thierry, A. M., Javoy, J., Glowinski, J., and Kety, S. S., 1968b, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover, J. Pharmacol. Exp. Ther. 163: 163–171.

    Google Scholar 

  • Thierry, A. M., Blanc, G., and Glowinski, J., 1970, Preferential utilization of newly synthe- sized norepinephrine in the brain stem of stressed rats, Eur. J. Pharmcol. 10: 139.

    Google Scholar 

  • Thierry, A. M., Blanc, G., and Glowinski, J., 1971, Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brain stem of the rat, J. Neurochem. 18: 449–461.

    Google Scholar 

  • Thoa, N. B., Tizabi, Y., and Jacobowitz, D. M., 1976, The effect of prolonged isolation on the catecholamine and serotonin concentration of discrete areas of the rat brain, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 61–67, Pergamon Press, Oxford.

    Google Scholar 

  • Thoenen, H., 1970, Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold exposure, Nature 228: 861–862.

    Google Scholar 

  • Thomson, K., and Hendrie, H., 1972, Environmental stress in primary depressive illness, Arch. Gen. Psychiat. 26: 130–132.

    Google Scholar 

  • Tunnicliff, G., Wimer, C. C., and Wimer, R. E., 1973, Relationships between neurotransmit- ter metabolism and behaviour in seven inbred strains of mice, Brain Res. 61: 428–434

    Google Scholar 

  • Ungerstedt, U., 1971, Sterotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. 367: 1–48.

    Google Scholar 

  • Van Loon, G. R., 1976, Brain dopamine hydroxylase activity: Response to stress, tyrosine hydroxylase inhibition, hypophysectomy and ACTH administration, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 77–87, Pergamon Press, Oxford.

    Google Scholar 

  • Van Praag, H. M., and Korf, J., 1973, Monoamine metabolism in depression: Clinical

    Google Scholar 

  • application of the probenicid test, in “Serotonin and Behaviour” U. Barchas and E. Usdin, eds.), pp. 457–468, Academic Press, New York.

    Google Scholar 

  • Vernikos-Danellis, J., 1964, Estimation of corticotropin-releasing activity of rat hypothalamus and neurohypophysis before and after stress, Endocrinology 75: 514–520.

    Google Scholar 

  • Vertes, R. P. and Miller, N. E., 1976, Brain stem neurons that fire selectively to a conditioned stimulus for shock, Brain Res. 103: 229–242.

    Google Scholar 

  • Wallach, M. B., 1974, Drug-induced stereotyped behavior: Similarities and differences, in “Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes” (E. Usdin, ed.), pp. 241–260, Raven Press, New York.

    Google Scholar 

  • Weiss, J. M., 1971a, Effects of coping behavior in different warning signal conditions on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 1–13.

    Google Scholar 

  • Weiss, J. M., 197lb, Effects of punishing the coping response (conflict) on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 14–21.

    Google Scholar 

  • Weiss, J. M., 1971c, Effects of coping behavior with and without a feedback signal on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 22–30.

    Google Scholar 

  • Weiss, J. M., and Glazer, H. I., 1975, Effects of acute exposure to stressors on subsequent avoidance—escape behavior, Psychosom. Med. 37: 499–521.

    Google Scholar 

  • Weiss, J. M., Stone, E. A., and Harrell, N., 1970, Coping behavior and brain norepinephrine level in rats, J. Comp. Physiol. Psychol. 72: 153–160.

    Google Scholar 

  • Weiss, J. M., Pohorecky, L. A., Dorros, K., Williams, S., Emmel, D., Whittlesey, M., and Case, E., 1973, Coping behavior and brain norepinephrine turnover. Presented at the Eastern Psychological Association, Washington, D.C., May, 1973.

    Google Scholar 

  • Weiss, J. M., Glazer, H. 1., and Pohorecky, L. A., 1975a, Coping behaviour and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments, in “Animal Models in Human Psychobiology” (G. Serban and A. Kling, eds.), Plenum Press, New York.

    Google Scholar 

  • Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Brick, J., Miller, N. E., 1975b, Effects of chronic exposure to stressors on avoidance—escape behavior and on brain norepinephrine, Psychosom. Med. 37: 522–534.

    Google Scholar 

  • Welch, B. L., and Welch, A. S., 1967, Stimulus-dependent antagonism of the a-methyltyrosine induced lowering of brain catecholamines by (+) amphetamine in intact mice, J. Pharm. Pharmacol. 19: 841–843.

    Google Scholar 

  • Welch, A. S., and Welch, B. L., 1968a, Failure of natural stimuli to accelerate brain catecholamine depletion after biosynthesis inhibition with a-methyltyrosine, Brain Res. 9: 402–405.

    Google Scholar 

  • Welch, A. S., and Welch, B. L., 1968b, Effect of stress and parachlorophenylalamine upon brain serotonin, 5-hydroxyindoleactic acid and catecholamines in grouped and isolated mice, Biochem. Pharmacol. 17: 699.

    Google Scholar 

  • Welch, B. L., and Welch, A. S., 1968c, Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability, Nature (London) 218: 575–577.

    Google Scholar 

  • Welch, B. L., and Welch, A. S., 1969, Aggression and the biogenic amine neurohumors, in “Biology of Aggressive Behavior” (S. Garattini and E. B. Sigg, eds.), Excerpta Medica Foundation, Amsterdam.

    Google Scholar 

  • Welch, B. L., and Welch, A. S., 1970, Control of brain catecholamines and serotonin during acute stress and after d-amphetamine by natural inhibition of monoamine oxidase: An hypothesis, in “Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.), pp. 415–445, Raven Press, New York.

    Google Scholar 

  • Welch, B. L., Hendley, E. D., and Turek, I., 1974, Norepinephrine uptake into cerebral cortical synaptosomes after one fight or electroconvulsive shock, Science 183: 220–221

    Google Scholar 

  • Wimer, R. E., Norman, R., and Eleftheriou, B. E., 1974, Serotonin levels in hippocampus: Striking variations associated with mouse strain and treatment, Brain Res. 63: 397–401.

    Google Scholar 

  • Winokur, G., 1973, The types of affective disorders, J. Nero. Ment. Dis. 156: 82–96

    Google Scholar 

  • Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87: 724–732.

    Google Scholar 

  • Wilson, I. C., Prange, A. J., McClane, T. K., Rabon, A. M., Lipton, M. A., 1970, Thyroid hormone enhancement of imipramine in nonretarded depression, N. Engl. J. Med. 282: 1063–1067.

    Google Scholar 

  • Zajaczkowska, M. N., 1975, Acetylcholine content in the central and peripheral nervous system and its synthesis in the rat brain during stress and post-stress exhaustion, Acta Physiol. Pol. 26: 493–497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Anisman, H. (1978). Neurochemical Changes Elicited by Stress. In: Anisman, H., Bignami, G. (eds) Psychopharmacology of Aversively Motivated Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2394-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2394-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2396-9

  • Online ISBN: 978-1-4684-2394-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics