Skip to main content

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

The problem of optimal recovery is that of approximating as effectively as possible a given map of any function known to belong to a certain class from limited, and possibly error-contaminated, information about it. In this selective survey we describe some general results and give many examples of optimal recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhvalov, N. S., On the optimality of linear methods for operator approximation in convex classes of functions, USSR Computational Mathematics and Mathematical Physics 11 (1971), 244–249.

    Article  Google Scholar 

  2. Bojanov, B.D., Optimal methods of interpolation in Comptes Rendus de l’Acadamie Bulgare des Sciences 27 (1974), 885–888.

    Google Scholar 

  3. Bojanov, B.D., Best methods of interpolation for certain classes of differentiable functions, Matematicheskie Zametki 17 (1975), 511–524.

    Google Scholar 

  4. Bojanov, B.D., Favard’s interpolation and best approximation of periodic functions, preprint.

    Google Scholar 

  5. deBoor, C., A remark concerning perfect splines, Bull. Amer. Math. Soc. 80 (1974), 724–727.

    Article  Google Scholar 

  6. Burchard, H., Interpolation and approximation by generalized convex functions, Ph.D., Dissertation, Purdue University, Lafayette, Indiana, 1968.

    Google Scholar 

  7. Caratheodory, C., Theory of Functions of a Complex Variable, Volume Two, 2nd English Edition, Chelsea, New York, 1960.

    Google Scholar 

  8. Danskin, John M., The theory of max-min, with applications. SIAM Journal, 14 (1966), 641–664.

    Google Scholar 

  9. Duren, Peter L., Theory of spaces, Academic Press, New York 1970.

    Google Scholar 

  10. Fisher, S.D. and J.W. Jerome, The existence, characterization and essential uniqueness of solutions of L extremal problems Trans. Amer. Math. Soc. 187 (1974), 391–404.

    Google Scholar 

  11. Gaffney, P.W. and M.J.D. Powell, Optimal Interpolation, C.S.S. 16 Computer Science and Systems Division, A.E.R.E., Harwell, Oxfordshire, England 1975.

    Google Scholar 

  12. Golomb, M., and H.F. Weinberger, Optimal approximation and error bounds, in On Numerical Approximation, R.E. Langer ed. The University of Wisconsin Press, Madison (1959), 117–190.

    Google Scholar 

  13. Golusin, G.M. Geometrische Funktionentheorie, VEB, Berlin 1957.

    Google Scholar 

  14. Holmes, R.B., A Course on Optimization and Best Approximation Lecture Notes Series 257, Springer-Verlag, Berlin 1972.

    Google Scholar 

  15. Karlin, S., Interpolation properties of generalized perfect splines and the solution of certain extremal problems I, Trans. Amer. Math. Soc. 206 (1975), 25–66.

    Article  Google Scholar 

  16. Karlin, S. and W.J. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, Interscience Publishers, New York 1966.

    Google Scholar 

  17. Karlovitz, L.A., Remarks on variational characterization of Eigenvalues and n-widths problems, J. Math. Anal. Appl. 53 (1976), 99–110.

    Article  Google Scholar 

  18. Krein, M.G., The L-problem in abstract linear normed space in some questions in the theory of moments (N.I. Ahiezer, M.G. Krein, Eds.), Translations of Mathematical Monographs, Vol. 2 Amer. Math. Soc. Providence, R.I., 1962.

    Google Scholar 

  19. Krein, M.G., The ideas of P.L. Chebyshev and A.A. Markov in the theory of limiting values of integrals and their further developments, Amer. Math. Soc. Transl. 12 (1951), 1–122.

    Google Scholar 

  20. Marchuk, A.G., K. Yu Osipenko, Best approximation of functions specified with an error at a finite number of points, Matemati-cheskie Zametki 17 (1975), 359–368.

    Google Scholar 

  21. Meinguet, J., Optimal approximation and error bounds in semi-no rmed spaces, Numer. Math. 10 (1967) 370–388.

    Google Scholar 

  22. Melkman, A.A., n-widths and optimal interpolation of time-and band-limited functions, these proceedings.

    Google Scholar 

  23. Melkman, A.A. and C.A. Micchelli, On nonuniqueness of optimal subspaces for L n-width, IBM Research Report 6113 (1976).

    Google Scholar 

  24. Micchelli, C.A., Saturation classes and iterates of operators, Ph.D. Dissertation, Stanford University, 1969.

    Google Scholar 

  25. Micchelli, C.A., On an optimal method for the numerical differentiation of smooth functions, J. Approx. Theory 18(1976)189–204.

    Google Scholar 

  26. Micchelli, C.A., Best L1-approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines, to appear in J. Approx. Theory.

    Google Scholar 

  27. Micchelli, C.A., Optimal estimation of linear functionals, IBM Research Report 5729 (1975).

    Google Scholar 

  28. Micchelli, C.A., Optimal estimation of smooth functions from inaccurate data, in preparation.

    Google Scholar 

  29. Micchelli, C.A. and W. Miranker, High order search methods for finding roots, J. of Assoc. of Comp. Mach. 22 (1975), 51–60.

    Article  Google Scholar 

  30. Micchelli, C.A. and A. Pinkus, On n-widths in L, to appear Trans. Amer. Math. Soc.

    Google Scholar 

  31. Micchelli, C.A. and A. Pinkus, Moment theory for weak Chebyshev systems with applications to monosplines, quadrature formulae and best one-sided L1-approximation by spline functions with fixed knots, to appear in SIAM J. of Math. Anal.

    Google Scholar 

  32. Micchelli, C.A. and A. Pinkus, Total positivity and the exact n-width of certain sets in iX, to appear in Pacific Journal of Mathematics.

    Google Scholar 

  33. Micchelli, C.A. and A. Pinkus, On a best estimator for the class M using only function values, Math. Research Center, Univ. of Wisconsin, Report 1621 (1976).

    Google Scholar 

  34. Micchelli, C.A., and A. Pinkus, Some problems in the approximation of functions of two variables and the n-widths of integral operators, to appear as Math. Research Center Report, University of Wisconsin.

    Google Scholar 

  35. Micchelli, C.A., T.J. Rivlin, S. Winograd, Optimal recovery of smooth functions, Numer. Math. 260 (1976), 191–200.

    Google Scholar 

  36. Morozov, V.A. and A.L. Grebennikov, On optimal approximation of operators, Soviet Math Dokl. 16 (1975), 1084–1088.

    Google Scholar 

  37. Newman, D., Numerical differentiation of smooth data, preprint.

    Google Scholar 

  38. Osipenko, K. Yu, Optimal interpolation of analytic functions, Mathematicheskie Zametki 12 (1972), 465–476.

    Google Scholar 

  39. Osipenko, K. Yu, Best approximation of analytic functions from information about their values at a finite number of points, Matematischeski Zametki 19 (1976), 29–40.

    Google Scholar 

  40. Royden, H.L., Real Analysis, MacMillan Company, New York 1963.

    Google Scholar 

  41. Rudin, Walter, Functional Analysis, McGraw-Hill, New York 1973.

    Google Scholar 

  42. Sard, A., Optimal approximation, J. Funct. Anal. 1 (1967), 222–244.

    Google Scholar 

  43. Sard, A., Addendum 2 (1968), 368–369.

    Google Scholar 

  44. Schultz, M.H., Complexity and differential equations, in Analytic Computational Complexity, J.F. Traub, Academic Press 1976.

    Google Scholar 

  45. Smolyak, S.A., On an optimal restoration of functions and functionals of them, Candidate Dissertation, Moscow State University 1965.

    Google Scholar 

  46. Schoenberg, I.J., The elementary cases of Landau’s problems of inequalities between derivatives, Amer. Math. Monthly 80 (1973), 121–158.

    Article  Google Scholar 

  47. Tihomirov, V.M., Best methods of approximation and interpolation of differentiable functions in the space C[-l,+l], Math. USSR Sbornik, 9 (1969), 275–289.

    Article  Google Scholar 

  48. Weinberger, H.F., On optimal numerical solution of partial differential equations, SIAM J. Numer. Anal. 9 (1972), 182–198.

    Article  Google Scholar 

  49. Wiener, N., Extrapolation, Interpolation, and Smoothing of Stationary Time Series, the Technology Press of MIT and J. Wiley New York, 1950.

    Google Scholar 

  50. Winograd, S., Some remarks on proof techniques in analytic complexity, in Analytic Computational Complexity, Ed., J.F. Traub, Academic Press, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Micchelli, C.A., Rivlin, T.J. (1977). A Survey of Optimal Recovery. In: Micchelli, C.A., Rivlin, T.J. (eds) Optimal Estimation in Approximation Theory. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2388-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2388-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2390-7

  • Online ISBN: 978-1-4684-2388-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics