Skip to main content

Kinetic Energy Methods

  • Chapter
Handbook of Turbulence

Abstract

Problems in which turbulent flow fields dominate form a major portion of engineering fluid mechanics and heat transfer work. In principle, the calculation of these flows involves the solution of the time-dependent Navier-Stokes equations. But these equations cannot be solved without recourse to numerical methods, which must divide the flow field into a finite number of calculation points. The fundamental problem in the computation of turbulent flows then becomes the fact that turbulence introduces motions on a scale far smaller than the distances between the calculation points on the smallest practical numerical solution grid. Indeed, even if it were possible to compute the velocity field in a turbulent flow down to the smallest scale of motion of interest, another problem would be encountered. Because the velocity field in a turbulent flow fluctuates randomly, the variables of engineering interest in the flow are in general time or ensemble averages of the fluctuating quantities. In order to predict these averages, it would be necessary to repeat a detailed computation a great number of times, each with a slightly different initial condition, and ensemble-average the results. For these reasons, a direct assault on the problem of the computation of turbulent flows is impractical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, G., and Roshko, A., The effect of density difference on the turbulent mixing layer, in: Turbulent Shear Flows, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).

    Google Scholar 

  2. Kovasznay, L. S. G., Turbulent shear flow, presented at Convegno Sulla Teoria Delia Turbulenza, Roma, Italia, April 26–29, 1970.

    Google Scholar 

  3. Liu, J. T. C., Developing large scale wavelike eddies and the near jet noise field, J. Fluid Mech. 62, 437–464 (1974).

    Article  MATH  Google Scholar 

  4. Mellor, G. L., and Herring, H. J., A survey of the mean turbulent field closure models, AIAA J. 11, 590–599 (1973).

    Article  MATH  Google Scholar 

  5. Prandtl, L., Bericht iiber Untersuchungen zue ausgebildeten Turbulenz, Z. Angew. Math. Mech. 5, 136–139 (1925).

    MATH  Google Scholar 

  6. Prandtl, L., Bemerkungen zur Theorie der freien Turbulenz, Z. Angew. Math. Mech. 22, 241–243 (1942).

    Article  MathSciNet  Google Scholar 

  7. Schetz, J., Turbulent mixing of a jet in a coflowing stream, AIAA J. 6, 2008–2010 (1968).

    Article  Google Scholar 

  8. Tufts, L. W., and Smoot, L. D., A turbulent mixing coefficient correlation for coaxial jets with and without secondary flows, J. Spacecr. Rockets 8, 1183–1190 (1971).

    Article  Google Scholar 

  9. Zelazny, S. W., Morgenthaler, J. H., and Herendeen, D. L., Shear stress and turbulence intensity models for coflowing axisymmetric streams, AIAA J. 11, 1165–1173 (1973).

    Article  Google Scholar 

  10. Nee, V. W., and Kovasznay, L. S. G., Simple phenomenological theory of turbulent shear flows, Phys. Fluids 12, 473–484 (1969).

    Article  MATH  Google Scholar 

  11. Saffman, P. G., A model for inhomogeneous turbulent flows, Proc. R. Soc. London, Series A 317, 417–433 (1970).

    Article  MATH  Google Scholar 

  12. Bradshaw, P., Ferriss, D. H., and Atwell, N. P., Calculation of boundary-layer development using the turbulent energy equation, J. Fluid Mech. 28, 593–616 (1967).

    Article  Google Scholar 

  13. Saffman, P. G., and Wilcox, D. C., Turbulence—Model predictions for turbulent boundary layers, AIAA J. 12, 541–546 (1974).

    Article  MATH  Google Scholar 

  14. Morel, T., Torda, T. P., and Bradshaw, P., Turbulent kinetic energy equation and free mixing, in: Free Turbulent Shear Flows, Vol. 1, Conference Proceedings, NASA report No. SP-321 (1973), pp. 549–573.

    Google Scholar 

  15. Morel, T., and Torda, T. P., Calculation of free turbulent mixing by the interaction approach, AIAA J. 12, 533–540 (1974).

    Article  Google Scholar 

  16. Glushko, G. S., Turbulent boundary layer on a flat plate in an incompressible fluid, Izv. Akad. Nauk SSSR Mekh. 4, 13–23 (1965) [English translation available from DDC as report No. AD 638 204 (1966), also NASA report No. TT-F-10,080].

    Google Scholar 

  17. Beckwith, I. E., and Bushnell, D. M., Calculation of mean and fluctuating properties of the incompressible turbulent boundary layer, in: Proceedings of the AFOSR-IFP-Stanford Conference, Vol. 1 ( S. J. Kline, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 275–299.

    Google Scholar 

  18. Mellor, G. L., and Herring, H. J., Two methods of calculating turbulent boundary layer behavior based on numerical solutions of the equations of motion, in: Proceedings of the AFOSR -IFF-Stanford Conference, Vol. 1 ( S. J. Kilne, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 331–345.

    Google Scholar 

  19. Ng, K. H., and Spalding, D. B., Turbulence model for boundary layers near walls, Phys. Fluids 15, 20–30 (1972).

    Article  MATH  Google Scholar 

  20. Kolmogorov, A. N., The equations of turbulent motion in an incompressible fluid, Izv. Acad. Nauk SSSR Ser. Fiz. 6, 56–58 (1942) [English translation: report No. ON/6 Imperial College Department of Mechanical Engineering (1968)].

    Google Scholar 

  21. Prandtl, L., and Wieghardt, K., Über ein neues Formelsystem für die ausgebildete Turbulence, Nach. Akad. Wiss. Göttingen Math. Phys. Kl. 6–19 (1945).

    Google Scholar 

  22. Rotta, J. C., Statistische Theorie nichthomogener Turbulenz, Z. Phys. 129, 547–572 (1951) see also ibid. 131, 51–77 (1951).

    MathSciNet  Google Scholar 

  23. Jones, W. P., and Launder, B. E., The calculation of low Reynolds number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transfer 16, 1119–1130 (1973).

    Article  Google Scholar 

  24. Rodi, W., The prediction of free turbulent boundary layers by use of a two-equation model of turbulence, Ph.D. dissertation, University of London (1972).

    Google Scholar 

  25. Rodi, W., and Spalding, D. B., A two-parameter model of turbulence and its application to free jets, Wärme Stoffübertrag. 3, 85–95 (1970).

    Article  Google Scholar 

  26. Launder, B. E., Morse, A., Rodi, W., and Spalding, D. B., Prediction of free shear flows—A comparison of the performance of six turbulence models, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973), pp. 361–422.

    Google Scholar 

  27. Lee, S. C., and Harsha, P. T., Use of turbulent kinetic energy in free mixing studies, AIAA J. 8, 1026–1032 (1970).

    Article  Google Scholar 

  28. Harsha, P. T., Prediction of free turbulent mixing using a turbulent kinetic energy method, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973),pp. 463–519.

    Google Scholar 

  29. Harsha, P. T., A general analysis of free turbulent mixing, AEDC report No. TR-73-177 (1974).

    Google Scholar 

  30. Patel, V. C., and Head, M. R., A simplified version of Bradshaw’s method for calculating two-dimensional turbulent boundary layers, Aeronaut. Quart. 21, 243–262 (1970).

    Google Scholar 

  31. Peters, C. E., and Phares, W. J., An integral turbulent kinetic energy analysis of free shear flows, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973), pp. 577–624.

    Google Scholar 

  32. Chou, P. Y., On velocity correlations and the solution of the equations of turbulent fluctuation, Quart. J. Appl. Math. 3, 38–54 (1945).

    MATH  Google Scholar 

  33. Rotta, J. C., Recent attempts to develop a generally applicable calculation method for turbulent shear flow layers, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).

    Google Scholar 

  34. Daly, B. J., and Harlow, F. H., Transport equations in turbulence, Phys. Fluids 13, 2634–2649 (1970).

    Article  Google Scholar 

  35. Donaldson, C. du P., A progress report on an attempt to construct an invariant model of turbulent shear flows, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).

    Google Scholar 

  36. Lewellen, W. S., Teske, M., and Donaldson, C. duP., Application of turbulence model equations to axisymmetric wakes, AIAA J. 12, 620–625 (1974).

    Article  Google Scholar 

  37. Hanjalic, K., and Launder, B. E., Fully developed asymmetric flow in a plane channel, J. Fluid Mech. 51, 301–335 (1972).

    Article  Google Scholar 

  38. Reynolds, W. C., Computation of turbulent flow, AIAA Paper No. 74-556, AIAA 7th Fluid and Plasmadynamics Conference, June 17–19, 1974.

    Google Scholar 

  39. Yen, J. T., Kinetic theory of turbulent flow, Phys. Fluids 15, 1728–1734 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  40. Nee, V. W., and Kovasznay, L. S. G., The calculation of the incompressible turbulent boundary layers by a simple theory, in: Proceedings of the AFOSR-IFP-Stanford Con-ference, Vol. 1 ( S. J. Kline, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 300–320.

    Google Scholar 

  41. Kline, S. J., Morkovin, M. V., Sovran, G., and Cockrell, D. J., eds., Proceedings of the AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers, Ther- mosciences Div., Mechanical Engineering Department, Stanford University, Stanford, California (1969).

    Google Scholar 

  42. Nevzgljadov, V., A phenomenological theory of turbulence, J. Phys. USSR 9, 235–243 (1945).

    MathSciNet  Google Scholar 

  43. Dryden, H. L., Recent advances in the mechanics of boundary layer flow, in: Advances in Applied Mechanics, Vol. 1 ( R. Von Mises and T. von Kärmän, eds.), Academic Press, New York (1948), pp. 1–40.

    Chapter  Google Scholar 

  44. Lee, S. C., Harsha, P. T., Auiler, J. E., and Lin, C. L., Heat mass and momentum transfer in free turbulent mixing, in: Proceedings of the 1972 Heat Transfer and Fluid Mechanics Institute ( R. B. Landis and G. J. Hardeman, eds.), Stanford University Press, Stanford, California (1972), pp. 215–230.

    Google Scholar 

  45. Mikatarian, R. R., and Benefield, J. W., Turbulence in chemical lasers, AIAA Paper No. 74–148, AIAA 12th Aerospace Sciences Meeting, January 30-February 1, 1974.

    Google Scholar 

  46. Rhodes, R. P., Harsha, P. T., and Peters, C. E., Turbulent kinetic energy analyses of hydrogen-air diffusion flames, Acta Astronaut. 1, 443–470 (1974).

    Article  Google Scholar 

  47. Runchal, A. K., and Spalding, D. B., Steady turbulent flow and heat transfer downstream of a sudden enlargement in a pipe of circular cross section, Wärme Stoffübertrag. 5, 31–38 (1972).

    Article  Google Scholar 

  48. Bradshaw, P., and Ferriss, D. H., Applications of a general method of calculating turbulent shear layers, J. Basic Eng. Trans. ASME 94, 345–352 (1972).

    Article  Google Scholar 

  49. Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, England (1956).

    Google Scholar 

  50. Bradshaw, P. and Ferriss, D. H., Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls, J. Fluid Mech. 46, 83–110 (1971).

    Google Scholar 

  51. Bradshaw, P., and Ferriss, D. H., Calculation of boundary layer development using the turbulent energy equation: IV. Heat transfer with small temperature differences, report No. Aero 1271, National Physical Laboratory, Teddington (1968).

    Google Scholar 

  52. Bradshaw, P., Calculation of three-dimensional turbulent boundary layers, J. Fluid Mech. 46, 417–445 (1971).

    Article  Google Scholar 

  53. Bradshaw, P., Dean, R. B., and McEligot, D. M., Calculation of interacting turbulent shear layers—Duct flow, J. Fluids Eng. Trans. ASME 95, 214–220 (1973).

    Article  Google Scholar 

  54. Thompson, B. G. J., A new two parameter family of mean velocity profiles for incompressi¬ble turbulent boundary layers on smooth walls, R & M report No. 3463, Aeronautical Research Council (1965).

    Google Scholar 

  55. Bradshaw, P., The turbulence structure of equilibrium boundary layers, J. Fluid Mech. 29, 625–645 (1967).

    Article  Google Scholar 

  56. Harsha, P. T., and Lee, S. C., Correlation between turbulent shear stress and turbulent kinetic

    Google Scholar 

  57. Free Turbulent Shear Flows, Vol. I, Conference Proceedings, Vol. II, Summary of Data, NASA, Langley Research Center, Hampton, Virginia, NASA report No. SP 321 (1973).

    Google Scholar 

  58. Wygnanski, I., and Fiedler, H., Some measurements in the self-preserving jet, J. Fluid Mech. 38, 577–612 (1969).

    Article  Google Scholar 

  59. Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H., Diffusion of submerged jets, paper No. 2409, Trans. ASCE 115, 639–697 (1950).

    Google Scholar 

  60. Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, New York (1972).

    MATH  Google Scholar 

  61. Jones, W. P., and Launder, B. E., The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer 15, 301–314 (1972).

    Article  Google Scholar 

  62. Lin, C. C., ed., Turbulent Flows and Heat Transfer, Princeton University Press, Princeton, New Jersey (1959), p. 132.

    MATH  Google Scholar 

  63. Launder, B. E., and Spalding, D. B., The numerical computations of turbulent flows, report No. HTS/73/2, Imperial College, Department of Mechanical Engineering (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Harsha, P.T. (1977). Kinetic Energy Methods. In: Frost, W., Moulden, T.H. (eds) Handbook of Turbulence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2322-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2322-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2324-2

  • Online ISBN: 978-1-4684-2322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics