Skip to main content

Transition

  • Chapter

Abstract

Transition is the most complex problem of fluid mechanics, and perhaps of modern physics. A century of effort has produced very limited insight and only a few guidelines for the benefit of design engineers. Transition is the process by which a laminar flow becomes turbulent. While the definition of the word “turbulent” still leaves some uncertainty, there seems to be less doubt about what we call “transition.” In a laminar flow, it is reasonable to try to describe the motion by specifying the velocity at any point and any time. The theoretician will use analytic expressions, the numerologist will interpolate between values known at certain grid points. In a turbulent flow, this objective becomes meaningless. A full description of the flow would be of little use, since interest centers on averaged quantities, and especially on the Reynolds stress. Thus, statistical information becomes all-important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hama, F. R., Streaklines in a perturbed flow, Phys. Fluids 5, 644–650 (1962).

    Article  MATH  Google Scholar 

  2. Helmholtz, H. von, Uber discontinuierliche Flüssigkeitsbewegungen, Akad. Wiss. Berlin April, 215 (1868).

    Google Scholar 

  3. Rosenhead, L., The formation of vortices from a surface of discontinuity, Proc. R. Soc. London, A 134, 170–192 (1932).

    Google Scholar 

  4. Betchov, R., and Criminale, W. O., Stability of Parallel Flow, Academic Press, New York (1967).

    Google Scholar 

  5. Betchov, R., and Szewezyk, A., Stability of a shear layer between parallel streams, Phys. Fluids 6, 1391–1396 (1963).

    Article  MATH  Google Scholar 

  6. Tatsumi, T., and Gotoh, D., The stability of free boundary layers between two uniform streams, J. Fluid Mech. 7, 433–441 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  7. Gotoh, D., The damping of the large wave number disturbances in a free boundary layer flow, J. Phys. Soc. Japan 20, 164–169 (1965).

    Article  Google Scholar 

  8. Landau, L. D., Oscillation of an electron plasma, Sov. Phys.—JETP 10 (1946).

    Google Scholar 

  9. Stix, T. H., The Theory of Plasma Waves, McGraw-Hill, New York (1962).

    MATH  Google Scholar 

  10. Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M., The three-dimensional nature of boundary layer instability, J. Fluid Mech. 12, 1–34 (1962).

    Article  MATH  Google Scholar 

  11. Emmons, H. W., The laminar-turbulent transiton in a boundary layer—Part I, J. Aeronaut. Sei. 18, 490–498 (1951).

    MathSciNet  MATH  Google Scholar 

  12. Landau, L. D., and Lifshitz, E. M., Theoretical Physics, Vol. 6: Fluid Mechanics, Addison- Wesley Publishing Co., Reading, Massachusetts (1959).

    Google Scholar 

  13. Squire, H. B., On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls, Proc. R. Soc. London, A 142, 621–628 (1933).

    Article  MATH  Google Scholar 

  14. Criminale, W. O., and Kovasznay, L. S. G., The growth of localized disturbances in a laminar boundary layer, J. Fluid Mech. 14, 59–80 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  15. Gortier, H., Über den Einfluss der Wandkrümmung auf die Entstehung der Turbulenz, Z. Angew. Math. Mech. 20, 138–147 (1940).

    Google Scholar 

  16. Benney, D. J., and Lin, C. C., On the secondary motion induced by oscillations in a shear flow, Phys. Fluids 3, 656–657 (1960).

    Article  Google Scholar 

  17. Tani, I., Boundary layer transition, in: Annual Review of Fluid Mechanics, Vol. 1, W. R. Sears and M. Van Dyke (eds.), Annual Reviews, Inc., Palo Alto, California (1969), pp. 169–196.

    Google Scholar 

  18. Kovasznay, L. S. G., Komoda, H., and Vasudeva, B. R., Detailed flow field in transition, in: Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute ( F. E. Ehlers, J. J. Kauzlarich, C. A. Sleicher, and R. E. Street, eds.), Stanford University Press, Stanford, California (1962), pp. 1–26.

    Google Scholar 

  19. Smith, A. M. O., Transition, pressure gradient and stability theory, Proceedings of the Ninth International Congress on Applied Mechanics, Published by the Congress (1956).

    Google Scholar 

  20. Betchov, R., Thermal Agitation and Turbulence, in: Proceedings of the Second Interna-tional Symposium on Rarefied Gas Dynamics ( L. Talbot, ed.), Academic Press, New York (1961), pp. 307–21.

    Google Scholar 

  21. Tsuge, S., Approach to the origin of turbulence on the basis of two-point kinetic theory, Phys. Fluids 17, 22–23 (1974).

    Article  MATH  Google Scholar 

  22. Hama, F. R., Progressive deformation of a perturbed line vortex filament, Phys. Fluids 6, 526–534 (1963).

    Article  MATH  Google Scholar 

  23. Betchov, R., On the curvature and torsion of an isolated vortex filament, J. Fluid Mech. 22, 471–479 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  24. Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech. 51, 477–485 (1972).

    Article  MATH  Google Scholar 

  25. Leonard, A., Numerical simulation of interacting three-dimensional vortex filaments, Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics (R. D. Richtmeyer, ed.), Springer, Berlin (1975).

    Google Scholar 

  26. Mack, L. M., Boundary layer stability theory, Jet Propulsion Laboratory, California, Institute of Technology report No. 900-277 (1969).

    Google Scholar 

  27. Morkovin, M., On the many faces of transition, in: Symposium on Viscous Drag Reduction ( S. Wells, ed.), Plenum Press, New York (1969), pp. 1–31.

    Google Scholar 

  28. Nee, V. W., and Kovasznay, L. S. G., Simple phenomenological theory of turbulent shear flows, Phys. Fluids 12, 473–484 (1969).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Betchov, R. (1977). Transition. In: Frost, W., Moulden, T.H. (eds) Handbook of Turbulence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2322-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2322-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2324-2

  • Online ISBN: 978-1-4684-2322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics