Skip to main content

Turbulence: Diffusion, Statistics, Spectral Dynamics

  • Chapter
Handbook of Turbulence

Abstract

It is probably a bit misleading to say that turbulent flow is “random”; even if the birth of an eddy out of an instability somewhere in the flow field is a matter of “chance,” its subsequent evolution must be governed by the Navier-Stokes equations. Being careful, we shall say no more than that the turbulence is chaotic, and that for many practical purposes it is sufficient to know something about the statistical properties of the flow field. However, there are circumstances in which a statistical treatment will not do. For example, in weather forecasting, we want to predict at what time a particular eddy will pass over a certain area, and at which stage in its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tennekes, H., and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge, Massachusetts (1972).

    Google Scholar 

  2. Monin, A. S., and Yaglom, A. M., Statistical Fluid Mechanics, Volume 2, MIT Press, Cambridge, Massachusetts (1975).

    Google Scholar 

  3. Monin, A. S., and Yaglom, A. M., Statistical Fluid Mechanics, Volume 1, MIT Press, Cambridge, Massachusetts (1971).

    Google Scholar 

  4. Kraichnan, R. H., On Kolmogorov’s inertial-range theories, J. Fluid Mech. 62, 305–330 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  5. Kadomtsev, B. B., Plasma Turbulence, Academic Press, New York (1965).

    Google Scholar 

  6. Hinze, J. O., Turbulence, McGraw-Hill, New York (1959).

    Google Scholar 

  7. Kraichnan, R. H., The structure of isotropic turbulence at high Reynolds numbers, J. Fluid Mech. 5, 497–543 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  8. Tennekes, H., Eulerian and Lagrangian time microscales in isotropic turbulence, J. Fluid Mech. 67, 561–567 (1975).

    Article  MATH  Google Scholar 

  9. Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press, New York (1953).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Tennekes, H. (1977). Turbulence: Diffusion, Statistics, Spectral Dynamics. In: Frost, W., Moulden, T.H. (eds) Handbook of Turbulence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2322-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2322-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2324-2

  • Online ISBN: 978-1-4684-2322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics