Skip to main content

On Multicriteria Optimization

  • Chapter
Directions in Large-Scale Systems

Abstract

This paper examines the state of the art in multicriteria optimization. For this purpose, multicriteria problems are classified in terms of complexity as finite and small, finite and large, and infinite. The relative merits of typical methods for solving each of these classes are discussed and some suggestions for future work are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, R. P., “The Choice of Choice Theories,” in S. Messick and A. H. Brayfield (eds.), Decision and Choice, New York: McGraw-Hill, pp. 257–266, 1964.

    Google Scholar 

  2. Athans, M., “The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design,” IEEE Trans. Automat. Contr., vol. AC-16, pp. 529–552, Dec. 1971.

    Google Scholar 

  3. Briskin, L. E., “A Method Unifying Multiple Objective Functions,” Management Science, Vol. 12, pp. B406–B416, June 1966.

    Google Scholar 

  4. Briskin, L. E., “Establishing a Generalized Multi-Attribute Utility Function,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 236–245, 1973.

    Google Scholar 

  5. Charnes, A. and W. W. Cooper, Management Models and Industrial Application of Linear Programming, Vol. I, New York: Wiley, 1961.

    Google Scholar 

  6. Consumer Reports, Vol. 39, pp. 164–171, Feb. 1974.

    Google Scholar 

  7. Da Cunha, N. O. and E. Polak, “Constrainted Minimization Under Vector-Valued Criteria in Linear Topological Spaces,” in A. V. Balakrishnan and L. W. Neustadt (eds.), Mathematical Theory of Control, New York: Academic Press, pp. 96–108, 1967.

    Google Scholar 

  8. Dawes, R. M., “A Case Study of Graduate Admissions,” American Psychologist, Vol. 26, pp. 180–188, Feb. 1971.

    Article  Google Scholar 

  9. Dinkelbach, W. and H. Isermann, “On Decision Making Under Multiple Criteria and Under Incomplete Information,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 302–312, 1973.

    Google Scholar 

  10. Geoffrion, A., “Vector Maximal Decomposition Programming,” Western Management Science Institute, Univ. of California, Los Angeles, Working Paper No. 164, Sept. 1970.

    Google Scholar 

  11. Geoffrion, A. M., J. S. Dyer and A. Feinberg, “An Interactive Approach for Multi-Criterion Optimization with an Application to the Operation of an Academic Department, ” Management Science, Vol. 19, pp. 357–368, Dec. 1972.

    Article  Google Scholar 

  12. Hanieski, J. F., “Technological Change as the Optimization of a Multidimensional Product,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 550–569, 1973.

    Google Scholar 

  13. Huang, S. C., “Note on the Mean-Square Strategy of Vector Valued Objective Functions,” JOTA, Vol. 9, pp. 364–366, May 1972.

    Article  Google Scholar 

  14. Kung, H. T., “On the Computational Complexity of Finding the Maxima of a Set of Vectors, ” Proc. 15th Annual IEEE Symp. on Switching and Automata Theory, pp. 117–121, Oct. 1974.

    Google Scholar 

  15. Kung, H. T., F. Luccio and F. P. Preparata, “On Finding the Maxima of a Set of Vectors,” J. ACM, Vol. 22, pp. 469–476, Oct. 1975.

    Google Scholar 

  16. Luccio, F. and F. P. Preparata, “On Finding the Maxima of a Set of Vectors,” Istituto di Scienze dell’Informazione, Università di Pisa, Pisa, Italy, Dec. 1973.

    Google Scholar 

  17. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Reading, Mass.: Addison-Wesley, 1973.

    Google Scholar 

  18. MacCrimmon, K. R., “An Overview of Multiple Objective Decision Making,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 18–44, 1973.

    Google Scholar 

  19. Meisel, W. S., “Trade off Decisions in Multiple Criteria Decision Making,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 461–476, 1973.

    Google Scholar 

  20. Payne, H. J., E. Polak, D. C. Collins and W. S. Meisel, “An Algorithm for Bicriteria Optimization Based on the Sensitivity Function,” IEEE Trans. Automat. Contr., Vol. AC-20, pp. 546–548, Aug. 1975.

    Google Scholar 

  21. Polak, E., “On the Approximation of Solutions to Multiple Criteria Decision Making Problems,” Presented at XXII International Meeting of The Institute of Management Sciences, Kyoto, Japan, July 24–26, 1975.

    Google Scholar 

  22. Russ, F., “Consumer Evaluation of Alternative Product Models,” Ph.D. Dissertation, Carnegie-Mellon University, 1971.

    Google Scholar 

  23. Salukvadze, M. E., “Optimization of Vector Functionals. I. The Programming of Optimal Trajectories, ” Automation and Remote Control, Vol. 32, pp. 1169–1178, Aug. 1971.

    Google Scholar 

  24. Smale, S., “Global Analysis and Economics I. Pareto Optimum and a Generalization of Morse Theory,” in M. Peixoto (ed.), Dynamical Systems, New York: Academic Press, pp. 531–544, 1973.

    Google Scholar 

  25. Wan, Y. H., “Morse Theory for Two Functions,” Ph.D. Dissertation, Univ. of California, Berkeley, 1973.

    Google Scholar 

  26. Wolfe, P., “Convergence Theory in Nonlinear Programming,” in J. Abadie (ed.), Integer and Nonlinear Programming, New York: American Elsevier, pp. 1–36, 1970.

    Google Scholar 

  27. Yao, F. F., “On Finding the Maximal Elements in a Set of Plane Vectors,” Comput. Sci. Dep. Rep., University of Illinois at Urbana-Champaign, Urbana, 111., July 1974.

    Google Scholar 

  28. Yu, P. L., “A Class of Solutions for Group Decision Problems,” Management Science, Vol. 19, pp. 936–946, April 1973.

    Article  Google Scholar 

  29. Yu, P. L. and G. Leitmann, “Compromise Solutions, Domination Structures and Salukvadze’s Solution, ” JOTA, Vol. 13, pp. 362–378, Mar. 1974.

    Article  Google Scholar 

  30. Zeleny, M., “Compromise Programming,” in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, Columbia, S. C.: USC Press, pp. 262–301, 1973.

    Google Scholar 

  31. Zeleny, M., Linear Multiobjective Programming, Berlin: Springer-Verlag, 1974.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Polak, E., Payne, A.N. (1976). On Multicriteria Optimization. In: Ho, Y.C., Mitter, S.K. (eds) Directions in Large-Scale Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2259-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2259-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2261-0

  • Online ISBN: 978-1-4684-2259-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics