Skip to main content

The Hyper-β- and Hyperpre- β-lipoproteinemias

  • Chapter

Abstract

The physiologic role of VLDL and chylomicrons in the transport of triglyceride has been recognized for many years. The important role of LDL in the delivery of cholesterol and phospholipid to the cells of the body, however, has been brought into sharp focus only within the past several years. The studies by Goldstein and Brown have clearly established this role for LDL,1,2 and the disease a-β-lipoproteinemia provides a clinical testimonial to the consequences of defective cholesterol transport by LDL.3 The elegant studies by Goldstein and Brown have demonstrated, in fibroblasts, the presence of receptors which specifically recognize LDL and VLDL, and it is the absence of the high-affinity LDL receptor which characterizes the homozygous subject with familial hyper-β-lipoproteinemia.4,5 These individuals and their heterozygous kindred, who have a decrease but not an absence in the number of high-affinity receptors, have a resultant impairment in LDL catabolism with increased concentrations of plasma LDL. The major clinical consequence of this hyper-β-lipoproteinemia is the development of premature atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Goldstein and M. S. Brown. 1973. Familial hypercholesterolemia: Identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl. Acad. Sci. U.S.A. 70:2804–2808.

    PubMed  CAS  Google Scholar 

  2. J. L. Goldstein and M. S. Brown. 1975. Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99:181–184.

    PubMed  CAS  Google Scholar 

  3. D. S. Fredrickson, A. M. Gotto, and R. I. Levy. 1972. Familial lipoprotein deficiency. In: The Metabolic Basis of Inherited Disease, 3rd ed. Ed. by J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson. McGraw-Hill, New York, pp. 493–530.

    Google Scholar 

  4. J. L. Goldstein and M. S. Brown. 1974. Binding and degradation of low density lipoprotein by cultured human fibroblasts. J. Biol Chem. 249:5153–5162.

    PubMed  CAS  Google Scholar 

  5. M. S. Brown and J. L. Goldstein. 1974. Expression of the familial hypercholes-terolemia gene in heterozygotes: Mechanism for a dominant disorder in man. Science 185:61–63.

    PubMed  CAS  Google Scholar 

  6. E. B. Smith. 1974. The relationship between plasma and tissue lipids in human atherosclerosis. Adv. Lipid Res. 12:1–49.

    PubMed  CAS  Google Scholar 

  7. H. F. Hoff, R. L. Jackson, S. J. T. Mao, and A. M. Gotto, Jr. 1974. Localization of low-density lipoproteins in atherosclerotic lesions from human normolipemics employing a purified fluorescent-labeled antibody. Biochim. Biophys. Acta 351:407–415.

    PubMed  CAS  Google Scholar 

  8. E. L. Bierman and J. J. Albers. 1975. Lipoprotein uptake by cultured human arterial smooth muscle cells. Biochim. Biophys. Acta 388:198–202.

    PubMed  CAS  Google Scholar 

  9. R. Ross and J. A. Glomset. 1973. Atherosclerosis and the arterial smooth muscle cell. Science 180:1332–1339.

    PubMed  CAS  Google Scholar 

  10. Y. Stein, M. C. Glangeaud, M. Fainaru, and O. Stein. 1975. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cells by fractions of human high-density apolipoprotein. Biochim. Biophys. Acta 380:106–118.

    PubMed  CAS  Google Scholar 

  11. J. W. Gofman, H. B. Jones, F. T. Lindgren, T. P. Lyon, H. A. Elliott, and B. Strisower. 1950. Blood lipids and human atherosclerosis. Circulation 2:161–178.

    PubMed  CAS  Google Scholar 

  12. D. P. Barr, E. M. Russ, and H. A. Eder. 1951. Protein-lipid relationships in human plasma: In atherosclerosis and related conditions. Am. J. Med. 11:480–493.

    PubMed  CAS  Google Scholar 

  13. W. B. Kannel, W. P. Castelli, T. Gordon, and P. M. McNamara. 1971. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann. Intern. Med. 74:1–12.

    PubMed  CAS  Google Scholar 

  14. J. Slack. 1969. Risks of ischaemic heart-disease in familial hyperlipoproteinaemic states. Lancet 2:1380–1382.

    PubMed  CAS  Google Scholar 

  15. L. A. Carlson and L. E. Böttiger. 1972. Ischaemic heart-disease in relation to fasting values of plasma triglycerides and cholesterol. Lancet 1:865–868.

    PubMed  CAS  Google Scholar 

  16. D. S. Fredrickson and R. I. Levy. 1972. Familial hyperlipoproteinemia. In: The Metabolic Basis of Inherited Disease, 3rd ed. Ed. by J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson. McGraw-Hill, New York, pp. 545–614.

    Google Scholar 

  17. D. S. Fredrickson and R. S. Lees. 1965. A system for phenotyping hyperlipoproteinemia. Circulation 31:321–327.

    PubMed  CAS  Google Scholar 

  18. J. L. Beaumont, L. A. Carlson, G. R. Cooper, Z. Fejfar, D. S. Fredrickson, and T. Strasser. 1970. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull. W.H.O. 43:891–915.

    PubMed  CAS  Google Scholar 

  19. D. Seidel, P. Alaupovic, and R. H. Furman. 1969. A lipoprotein characterizing obstructive jaundice. I. Method for quantitative separation and identification of lipoproteins in jaundiced subjects. J. Clin. Invest. 48:1211–1223.

    PubMed  CAS  Google Scholar 

  20. D. Seidel, P. Alaupovic, R. H. Furman, and W. J. McConathy. 1970. A lipoprotein characterizing obstructive jaundice. II. Isolation and partial characterization of the protein moieties of low density lipoproteins. J. Clin. Invest. 49:2396–2407.

    PubMed  CAS  Google Scholar 

  21. D. Seidel, H. Greten, H. P. Geisen, H. Wengeler, and H. Wieland. 1972. Further aspects on the characterization of high and very low density lipoproteins in patients with liver disease. Eur. f. Clin. Invest. 2:359–364.

    CAS  Google Scholar 

  22. P. Müller, R. Fellin, J. Lambrecht, B. Agostini, H. Wieland, W. Rost, and D. Seidel. 1974. Hypertriglyceridaemia secondary to liver disease. Eur.J. Clin. Invest. 4:419–428.

    PubMed  Google Scholar 

  23. J. B. Marsh and D. L. Drabkin. 1960. Experimental reconstruction of metabolic pattern of lipid nephrosis: Key role of hepatic protein synthesis in hyperlipemia. Metabolism 9:946–955.

    PubMed  CAS  Google Scholar 

  24. S. R. Newmark, C. F. Anderson, J. V. Donadio, Jr., and R. D. Ellefson. 1975. Lipoprotein profiles in adult nephrotics. Mayo Clin. Proc 50:359–364.

    PubMed  CAS  Google Scholar 

  25. D. Porte, Jr., D. D. O’Hara, and R. H. Williams. 1966. The relation between post-heparin lipolytic activity and plasma triglyceride in myxedema. Metabolism 15:107–113.

    PubMed  CAS  Google Scholar 

  26. E. A. Nikkilä and M. Kekki. 1972. Plasma triglyceride metabolism in thyroid disease. J. Clin. Invest. 51:2103–2114.

    PubMed  Google Scholar 

  27. B. R. Tulloch, B. Lewis, and T. R. Fraser. 1973. Triglyceride metabolism in thyroid disease. Lancet 1:391–394.

    PubMed  CAS  Google Scholar 

  28. K. W. Walton, P. J. Scott, P. W. Dykes, and J. W. L. Davies. 1965. The significance of alterations in serum lipids in thyroid dysfunction. II. Alterations of the metabolism and turnover of 131I-low-density lipoproteins in hypothyroidism and thyrotoxicosis. Clin. Sci. 29:217–238.

    PubMed  CAS  Google Scholar 

  29. N. J. Greenberger, F. T. Hatch, G. D. Drummey, and K. J. Isselbacher. 1966. Pancreatitis and hyperlipemia: A study of serum lipid alterations in 25 patients with acute pancreatitis. Medicine 45:161–174.

    Google Scholar 

  30. J. L. Cameron, D. M. Capuzzi, G. D. Zuidema, and S. Margolis. 1974. Acute pancreatitis with hyperlipemia. Evidence for a persistent defect in lipid metabolism. Am. J. Med. 56:482–487.

    PubMed  CAS  Google Scholar 

  31. R. G. Farmer, E. I. Winkelman, H. B. Brown, and L. A. Lewis. 1973. Hyperlipoproteinemia and pancreatitis. Am. J. Med. 54:161–165.

    PubMed  CAS  Google Scholar 

  32. D. J. Kudzma and G. Schonfeld. 1971. Alcoholic hyperlipidemia: Induction by alcohol but not by carbohydrate. J. Lab. Clin. Med. 77:384–395.

    PubMed  CAS  Google Scholar 

  33. C. S. Lieber. 1974. Effects of ethanol upon lipid metabolism. Lipids 9:103–116.

    PubMed  CAS  Google Scholar 

  34. H. Ginsberg, J. Olefsky, J. W. Farquhar, and G. M. Reaven. 1974. Moderate ethanol ingestion and plasma triglyceride levels. A study in normal and hypertriglyceridemic persons. Ann. Intern. Med. 80:143–149.

    PubMed  CAS  Google Scholar 

  35. E. A. Nikkilä. 1969. Control of plasma and liver triglycéride kinetics by carbohydrate metabolism and insulin. Adv. Lipid Res. 7:63–134.

    PubMed  Google Scholar 

  36. E. A. Nikkilä and M. Kekki. 1973. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism 22:1–22.

    PubMed  Google Scholar 

  37. C. J. Glueck, R. Fallat, C. R. Buncher, R. Tsang, and P. Steiner. 1973. Familial combined hyperlipoproteinemia: Studies in 91 adults and 95 children from 33 kindreds. Metabolism 22:1403–1428.

    Google Scholar 

  38. H. G. Rose, P. Kranz, M. Weinstock, J. Juliano, and J. I. Haft. 1973. Inheritance of combined hyperlipoproteinemia: Evidence for a new lipoprotein phenotype. Am. J. Med. 54:148–160.

    PubMed  CAS  Google Scholar 

  39. J. L. Goldstein, W. R. Hazzard, H. G. Schrott, E. L. Bierman, and A. G. Motulsky. 1973. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52:1544–1568.

    PubMed  CAS  Google Scholar 

  40. W. R. Hazzard, J. L. Goldstein, H. G. Schrott, A. G. Motulsky, and E. L. Bierman. 1973. Hyperlipidemia in coronary heart disease. III. Evaluation of lipoprotein phenotypes of 156 genetically defined survivors of myocardial infarction. J. Clin. Invest. 52:1569–1577.

    PubMed  CAS  Google Scholar 

  41. R. M. Greenhalgh, D. S. Rosengarten, I. Mervart. B. Lewis, J. S. Calnan, and P. Martin. 1971. Serum lipids and lipoproteins in peripheral vascular disease. Lancet 2:947–950.

    PubMed  CAS  Google Scholar 

  42. J. L. de Gennes, J. Rouffy, and F. Chain. 1968. Complications vasculaires cerebrales des xanthomatoses tendineuses hypercholesterolemiques familiales. Soc. Med. Hop. Paris Mem. 119:569–586.

    Google Scholar 

  43. N. T. Mathew, D. Davis, J. S. Meyer, and K. Chandar. 1975. Hyperlipoproteinemia in occlusive cerebrovascular disease. J. Am. Med. Assoc. 232:262–266.

    CAS  Google Scholar 

  44. C. J. Glueck, R. I. Levy, and D. S. Fredrickson. 1968. Acute tendonitis and arthritis. A presenting symptom of familial type II hyperlipoproteinemia. J. Am. Med. Assoc. 206:2895–2897.

    CAS  Google Scholar 

  45. A. K. Khachadurian. 1968. Migratory polyarthritis in familial hypercholesterolemia (type II hyperlipoproteinemia). Arthritis Rheum. 11:385–392.

    PubMed  CAS  Google Scholar 

  46. N. C. Nevin and J. Slack. 1968. Hyperlipidaemic xanthomatosis. II. Mode of inheritance in 55 families with essential hyperlipidaemia and xanthomatosis. J. Med. Genet. 5:9–28.

    PubMed  CAS  Google Scholar 

  47. J. Jensen and D. H. Blankenhorn. 1972. The inheritance of familial hypercholesterolemia. Am. J. Med. 52:499–516.

    PubMed  CAS  Google Scholar 

  48. H. G. Schrott, J. L. Goldstein, W. R. Hazzard, M. M. McGoodwin, and A. G. Motulsky. 1972. Familial hypercholesterolemia in a large kindred. Ann. Intern. Med. 76:711–720.

    PubMed  CAS  Google Scholar 

  49. P. O. Kwiterovich, Jr., D. S. Fredrickson, and R. I. Levy. 1974. Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia). A study of its biochemical, genetic, and clinical presentation in childhood. J. Clin. Invest. 53:1237–1249.

    PubMed  Google Scholar 

  50. C. J. Glueck, F. Heckman, M. Schoenfeld, P. Steiner, and W. Pearce. 1971. Neonatal familial type II hyperlipoproteinemia: Cord blood cholesterol in 1800 births. Metabolism 20:597–608.

    PubMed  CAS  Google Scholar 

  51. E. A. Nikkilä and A. Aro. 1973. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet 1:954–958.

    PubMed  Google Scholar 

  52. G. Schonfeld and D. J. Kudzma. 1973. Type IV hyperlipoproteinemia; a critical appraisal. Arch. Intern. Med. 132:55–62.

    PubMed  CAS  Google Scholar 

  53. C. J. Glueck, R. I. Levy, and D. S. Fredrickson. 1969. Immunoreactive insulin, glucose tolerance, and carbohydrate inducibility in types II, III, IV, and V hyperlipoproteinemia. Diabetes 18:739–747.

    PubMed  CAS  Google Scholar 

  54. J. W. Farquhar, A. Frank, R. C. Gross, and G. M. Reaven. 1966. Glucose, insulin, and triglyceride responses to high and low carbohydrate diets in man. J. Clin. Invest. 45:1648–1656.

    PubMed  CAS  Google Scholar 

  55. G. M. Reaven, R. L. Lerner, M. P. Stern, and J. W. Farquhar. 1967. Role of insulin in endogenous hypertriglyceridemia. J. Clin. Invest. 46:1756–1767.

    PubMed  CAS  Google Scholar 

  56. P. W. Adams, A. H. Kissebah, P. Harrigan, T. Stokes, and V. Wynn. 1974. The kinetics of plasma free fatty acid and triglyceride transport in patients with idiopathic hypertriglyceridaemia and their relation to carbohydrate metabolism. Eur. J. Clin. Invest. 4:149–161.

    PubMed  CAS  Google Scholar 

  57. S. Sailer, K. Bolzano, F. Sandhofer, P. Spath, and H. Braunsteiner. 1968. Triglyceridspiegel und Insulinkonzentration im Plasma nach Oraler Glukosegabe bei Patienten mit Primärer Kohlenhydratinduzierter Hypertriglyceridämie. Schweiz. Med. Wochenschr. 98:1512–1517.

    PubMed  CAS  Google Scholar 

  58. J. D. Bagdade, D. Porte, Jr., and E. L. Bierman. 1967. Diabetic lipemia. A form of acquired fat-induced lipemia. N. Engl. J. Med. 276:427–433.

    PubMed  CAS  Google Scholar 

  59. J. D. Brunzell, W. R. Hazzard, D. Porte, Jr., and E. L. Bierman. 1973. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 52:1578–1585.

    PubMed  CAS  Google Scholar 

  60. F. Parker, J. D. Bagdade, G. F. Odland, and E. L. Bierman. 1970. Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: A correlative lipid biochemical, histochemical, and electron microscopic study. J. Clin. Invest. 49:2172–2187.

    PubMed  CAS  Google Scholar 

  61. J. A. Goldman, C. J. Glueck, N. R. Abrams, P. Steiner, and J. H. Herman. 1972. Musculoskeletal disorders associated with type-IV hyperlipoproteinaemia. Lancet 2:449–452.

    PubMed  CAS  Google Scholar 

  62. J. D. Brunzell, W. R. Hazzard, A. G. Motulsky, and E. L. Bierman. 1975. Evidence for diabetes mellitus and genetic forms of hypertriglyceridemia as independent entities. Metabolism 24:1115–1121.

    PubMed  CAS  Google Scholar 

  63. P. H. Schreibman, D. E. Wilson, and R. A. Arky. 1969. Familial type IV hyperlipoproteinemia. N. Engl.J. Med. 281:981–985.

    PubMed  CAS  Google Scholar 

  64. W. R. Fisher, M. G. Hammond, and G. L. Warmke. 1972. Measurements of the molecular weight variability of plasma low density lipoproteins among normals and subjects with hyper-α-lipoproteinemia. Demonstration of macromolecular heterogeneity. Biochemistry 11:519–525.

    PubMed  CAS  Google Scholar 

  65. M. G. Hammond and W. R. Fisher. 1971. The characterization of a discrete series of low density lipoproteins in the disease, hyper-pre-α-lipoproteinemia. J. Biol. Chem. 246:5454–5465.

    PubMed  CAS  Google Scholar 

  66. W. R. Fisher, M. G. Hammond, D. T. Hughes, M. C. Mengel, and G. L. Warmke. 1975. Macromolecular dispersion of human plasma low density lipoproteins (LDL) in hyperlipoproteinemia. Clin. Res. 23:420A.

    Google Scholar 

  67. W. R. Fisher, M. G. Hammond, M. C. Mengel, and G. L. Warmke. 1975. A genetic determinant of the phenotypic variance of the molecular weight of low density lipoprotein. Proc. Natl. Acad. Sci. U.S.A. 72:2347–2351.

    PubMed  CAS  Google Scholar 

  68. A. M. Gotto, W. V. Brown, R. I. Levy, M. E. Birnbaumer, and D. S. Fredrickson. 1972. Evidence for the identity of the major apoprotein in low density and very low density lipoproteins in normal subjects and patients with familial hyperlipoproteinemia. J. Clin. Invest. 51:1486–1494.

    PubMed  CAS  Google Scholar 

  69. J.-C. Pinon and P. Laudat. 1969. Apoproteine-β du plasma: Composition en acides amines dans Phypercholesterolemie du type II familiale. Biochim. Biophys. Acta 187:144–146.

    PubMed  CAS  Google Scholar 

  70. J.-C. Pinon and P. Laudat. 1971. Low-density lipoprotein of human plasma: N-Terminal amino acids in familial hyperbetalipoproteinemia (type II). Clin. Chim. Acta 32:131–133.

    PubMed  CAS  Google Scholar 

  71. J. Slack and G. L. Mills. 1970. Anomalous low density lipoproteins in familial hyper-betalipoproteinaemia. Clin. Chim. Acta 29:15–25.

    PubMed  CAS  Google Scholar 

  72. R. B. Triplett and W. R. Fisher. 1976. The apoprotein in the structural organization of low density lipoprotein. (submitted).

    Google Scholar 

  73. R. Smith, J. R. Dawson, and C. Tanford. 1972. The size and number of polypeptide chains in human serum low density lipoprotein. J. Biol. Chem. 247:3376–3381.

    PubMed  CAS  Google Scholar 

  74. D. M. Lee and P. Alaupovic. 1974. Physicochemical properties of low-density lipoproteins of normal human plasma. Biochem. J. 137:155–167.

    PubMed  CAS  Google Scholar 

  75. S. Eisenberg, D. W. Bilheimer, R. I. Levy, and F. T. Lindgren. 1973. On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein. Biochim. Biophys. Acta 326:361–377.

    PubMed  CAS  Google Scholar 

  76. B. Shore and V. Shore. 1974. An apolipoprotein preferentially enriched in cholesteryl ester-rich very low density lipoproteins. Biochem. Biophys. Res. Commun. 58:1–7.

    PubMed  CAS  Google Scholar 

  77. F. A. Shelburne and S. H. Quarfordt. 1974. A new apoprotein of human plasma very low density lipoproteins. J. Biol. Chem. 249:1428–1433.

    PubMed  CAS  Google Scholar 

  78. D. S. Robinson and D. R. Wing. 1972. Clearing factor lipase and its role in the regulation of triglyceride utilization. Studies on the enzyme in adipose tissue. Adv. Exp. Med. Biol. 26:71–76.

    PubMed  CAS  Google Scholar 

  79. C. J. Fielding. 1970. Human lipoprotein lipase. I. Purification and substrate specificity. Biochim. Biophys. Acta 206:109–117.

    PubMed  CAS  Google Scholar 

  80. P. E. Fielding, V. G. Shore, and C. J. Fielding. 1974. Lipoprotein lipase: Properties of the enzyme isolated from post-heparin plasma. Biochemistry 13:4318–4323.

    PubMed  CAS  Google Scholar 

  81. A. Bensadoun, C. Ehnholm, D. Steinberg and W. V. Brown. 1974. Purification and characterization of lipoprotein lipase from pig adipose tissue. J. Biol. Chem. 249:2220–2227.

    PubMed  CAS  Google Scholar 

  82. H. Greten and B. Walter. 1973. Purification of rat adipose tissue lipoprotein lipase. FEBS Lett. 35:36–40.

    PubMed  CAS  Google Scholar 

  83. C. J. Fielding and J. M. Higgins. 1974. Lipoprotein lipase: Comparative properties of the membrane-supported and solubilized enzyme species. Biochemistry 13:4324–4329.

    PubMed  CAS  Google Scholar 

  84. B. Persson and B. Hood. 1970. Characterization of lipoprotein lipase activity eluted from human adipose tissue. Atherosclerosis 12:241–251.

    PubMed  CAS  Google Scholar 

  85. D. M. Kornhauser and M. Vaughan. 1975. Release of lipoprotein lipase from fat cells in vitro. Biochim. Biophys. Acta 380:97–105.

    PubMed  CAS  Google Scholar 

  86. J. E. Stewart and M. C. Schotz. 1974. Release of lipoprotein lipase activity from isolated fat cells. J. Biol. Chem. 249:904–907.

    PubMed  CAS  Google Scholar 

  87. R. J. Havel, V. G. Shore, B. Shore, and D. M. Bier. 1970. Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ. Res. 27:595–600.

    PubMed  CAS  Google Scholar 

  88. J. C. LaRosa, R. I. Levy, P. Herbert, S. E. Lux, and D. S. Fredrickson. 1970. A specific apoprotein activator for lipoprotein lipase. Biochem. Biophys. Res. Commun. 41:57–62.

    PubMed  CAS  Google Scholar 

  89. W. V. Brown and M. L. Baginsky. 1972. Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem. Biophys. Res. Commun. 46:375–382.

    PubMed  CAS  Google Scholar 

  90. J. Boberg, P. H. Iverius, H. Lithell, and A.-M. Östlund. 1973. Effects of very low density lipoprotein peptides on lipoprotein lipase activities. Eur. J. Clin. Invest. 3:214.

    Google Scholar 

  91. R. J. Havel, J. P. Kane, and M. L. Kashyap. 1973. Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J. Clin. Invest. 52:32–38.

    PubMed  CAS  Google Scholar 

  92. P. J. Dolphin and D. Rubinstein. 1974. The metabolism of very low density lipoprotein and chylomicrons by purified lipoprotein lipase from rat heart and adipose tissue. Biochem. Biophys. Res. Commun. 57:808–814.

    PubMed  CAS  Google Scholar 

  93. J. K. Huttunen and E. A. Nikkilä. 1973. Postheparin plasma lipase in human subjects. Studies with chylomicrons, very-low density lipoproteins and a fat emulsion. Eur.J Clin. Invest. 3:483–490.

    PubMed  CAS  Google Scholar 

  94. J. M. Higgins and C. J. Fielding. 1975. Lipoprotein lipase. Mechanism of formation of triglyceride-rich remnant particles from very low density lipoproteins and chylomicrons. Biochemistry 14:2288–2292.

    PubMed  CAS  Google Scholar 

  95. R. D. Phair, M. G. Hammond, J. A. Bowden, M. Fried, W. R. Fisher, and M. Berman. 1975. A preliminary model for human lipoprotein metabolism in hyperlipoproteinemia. Fed. Proc. 34:2263–2270.

    PubMed  CAS  Google Scholar 

  96. E. J. Blanchette-Mackie and R. O. Scow. 1971. Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons. J. Cell Biol. 51:1–25.

    PubMed  CAS  Google Scholar 

  97. R. P. Eaton, M. Berman, and D. Steinberg. 1969. Kinetic studies of plasma free fatty acid and triglyceride metabolism in man. J. Clin. Invest. 48:1560–1579.

    PubMed  CAS  Google Scholar 

  98. C. H. Hollenberg. 1959. Effect of nutrition on activity and release of lipase from rat adipose tissue. Am. J. Phys. 197:667–670.

    CAS  Google Scholar 

  99. J. I. Kessler. 1963. Effect of diabetes and insulin on the activity of myocardial and adipose tissue lipoprotein lipase of rats. J. Clin. Invest. 42:362–366.

    PubMed  CAS  Google Scholar 

  100. J. D. Schnatz and R. H. Williams. 1963. The effect of acute insulin deficiency in the rat on adipose tissue lipolytic activity and plasma lipids. Diabetes 12:174–177.

    PubMed  CAS  Google Scholar 

  101. J. D. Bagdade, D. Porte, Jr., and E. L. Bierman. 1968. Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects. Diabetes 17:127–132.

    PubMed  CAS  Google Scholar 

  102. G. Steiner. 1968. Lipoprotein lipase in fat-induced hyperlipemia. N. Engl. J. Med. 279:70–74.

    PubMed  CAS  Google Scholar 

  103. H. Greten, R. I. Levy, and D. S. Fredrickson. 1969. Evidence for separate monoglyceride hydrolase and triglyceride lipase in post-heparin human plasma. J. Lipid Res. 10:326–330.

    PubMed  CAS  Google Scholar 

  104. J. C. LaRosa, R. I. Levy, H. G. Windmueller, and D. S. Fredrickson. 1972. Comparison of the triglyceride lipase of liver, adipose tissue, and postheparin plasma. J. Lipid Res. 13:356–363.

    PubMed  CAS  Google Scholar 

  105. G. Assmann, R. M. Krauss, D. S. Fredrickson, and R. I. Levy. 1973. Positional specificity of triglyceride lipases in post-heparin plasma. J. Biol. Chem. 248:7184–7190.

    PubMed  CAS  Google Scholar 

  106. G. Assmann, R. M. Krauss, D. S. Fredrickson, and R. I. Levy. 1973. Characterization, subcellular localization, and partial purification of a heparin-released triglyceride lipase from rat liver. J. Biol. Chem. 248:1992–1999.

    PubMed  CAS  Google Scholar 

  107. R. M. Krauss, R. I. Levy, and D. S. Fredrickson. 1974. Selective measurement of two lipase activities in postheparin plasma from normal subjects and patients with hyper-lipoproteinemia. J. Clin. Invest. 54:1107–1124.

    PubMed  CAS  Google Scholar 

  108. D. Ganesan and H. B. Bass. 1975. Isolation of C-I and C-II activated lipoprotein lipases and protamine insensitive triglyceride lipase by heparin-Sepharose affinity chromatography. FEBS Lett. 53:1–4.

    PubMed  CAS  Google Scholar 

  109. R. J. Havel. 1972. Mechanisms of hyperlipoproteinemia. Adv. Exp. Med. Biol. 26:57–70.

    PubMed  CAS  Google Scholar 

  110. E. A. Nikkilä and M. Kekki. 1971. Measurement of plasma triglyceride turnover in the study of hyperglyceridemia. Scand. J. Clin. Lab. Invest. 27:105–111.

    Google Scholar 

  111. G. M. Reaven, D. B. Hill, R. C. Gross, and J. W. Farquhar. 1965. Kinetics of triglyceride turnover of very low density lipoproteins of human plasma. J. Clin. Invest. 44:1826–1833.

    PubMed  CAS  Google Scholar 

  112. E. A. Nikkilä and M. Kekki. 1971. Polymorphism of plasma triglyceride kinetics in normal human adult subjects. Acta Med. Scand. 190:49–59.

    PubMed  Google Scholar 

  113. J. Olefsky, J. W. Farquhar, and G. M. Reaven. 1974. Sex difference in the kinetics of triglyceride metabolism in normal and hypertriglyceridaemic human subjects. Eur.J. Clin. Invest. 4:121–127.

    PubMed  CAS  Google Scholar 

  114. S. Sailer, F. Sandhofer, and H. Braunsteiner. 1966. Unsatzraten fur Freie Fettsäuren und Triglyceride im Plasma bei Essentieller Hyperlipämie. Klin. Wochenschr. 44:1032–1036.

    PubMed  CAS  Google Scholar 

  115. S. H. Quarfordt, A. Frank, D. M. Shames, M. Berman, and D. Steinberg. 1970. Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets. J. Clin. Invest. 49:2281–2297.

    PubMed  CAS  Google Scholar 

  116. D. M. Shames, A. Frank, D. Steinberg, and M. Berman. 1970. Transport of plasma free fatty acids and triglycerides in man: A theoretical analysis. J. Clin. Invest. 49:2298–2314.

    PubMed  CAS  Google Scholar 

  117. R. J. Havel, J. P. Kane, E. O. Balasse, N. Segel, and L. V. Basso. 1970. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49:2017–2035.

    PubMed  CAS  Google Scholar 

  118. K. Bolzano, F. Sandhofer, S. Sailer, and H. Braunsteiner. 1972. The effect of oral administration of sucrose on the turnover rate of plasma free fatty acids and on the esteriflcation rate of plasma free fatty acids to plasma triglycerides in normal subjects, patients with primary endogenous hypertriglyceridemia, and patients with well controlled diabetes mellitus. Horm. Metab. Res. 4:439–446.

    PubMed  CAS  Google Scholar 

  119. J. Boberg, L. A. Carlson, U. Freyschuss, B. W. Lassers, and M. L. Wahlqvist. 1972. Splanchnic secretion rates of plasma triglycerides and total and splanchnic turnover of plasma free fatty acids in men with normo-and hypertriglyceridaemia. Eur.J. Clin. Invest. 2:454–466.

    PubMed  CAS  Google Scholar 

  120. D. Gitlin, D. G. Cornwell, D. Nakasato, J. L. Oncley, W. L. Hughes, Jr., and C. A. Janeway. 1958. Studies on the metabolism of plasma proteins in the nephrotic syndrome. II. The lipoproteins. J. Clin. Invest. 37:172–184.

    PubMed  CAS  Google Scholar 

  121. W. Volwiler, P. D. Goldsworthy, M. P. MacMartin, P. A. Wood, I. R. Mackay, and K. Fremont-Smith. 1955. Biosynthetic determination with radioactive sulfur of turnover rates of various plasma proteins in normal and cirrhotic man. J. Clin. Invest. 34:1126–1143.

    PubMed  CAS  Google Scholar 

  122. P. J. Hurley and P. J. Scott. 1970. Plasma turnover of S f0–9 low-density lipoprotein in normal men and women. Atherosclerosis 11:51–76.

    PubMed  CAS  Google Scholar 

  123. R. P. Eaton and D. M. Kipnis. 1972. Incorporation of 75Se selenomethionine into a protein component of plasma very-low-density lipoprotein in man. Diabetes 21:744–753.

    PubMed  CAS  Google Scholar 

  124. H. B. Stähelin. 1975. 75Se-Selenomethionine-labeled lipoproteins in hyperlipidemic and normolipidemic humans. Metabolism 24:505–515.

    PubMed  Google Scholar 

  125. W. J. Lossow, F. T. Lindgren, J. C. Murchio, G. R. Stevens, and L. C. Jensen. 1969. Particle size and protein content of six fractions of the S f > 20 plasma lipoproteins isolated by density gradient centrifugation. J. Lipid Res. 10:68–76.

    PubMed  CAS  Google Scholar 

  126. S. Eisenberg, D. Bilheimer, F. Lindgren, and R. I. Levy. 1972. On the apoprotein composition of human plasma very low density lipoprotein subfractions. Biochim. Biophys. Acta 260:329–333.

    PubMed  CAS  Google Scholar 

  127. M. S. Brown and J. L. Goldstein. 1974. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. U.S.A. 71:788–792.

    PubMed  CAS  Google Scholar 

  128. A. K. Khachadurian, M. Lipson, and F. S. Kawahara. 1975. Diagnosis of familial hypercholesterolemia by measurement of sterol synthesis in cultured skin fibroblasts. Atherosclerosis 21:235–244.

    PubMed  CAS  Google Scholar 

  129. A. M. Fogelman, J. Edmond, J. Seager, and G. Popjak. 1975. Abnormal induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in leukocytes from subjects with heterozygous familial hypercholesterolemia. J. Biol. Chem. 250:2045–2055.

    PubMed  CAS  Google Scholar 

  130. T. Langer, W. Strober, and R. I. Levy. 1972. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J. Clin. Invest. 51:1528–1536.

    PubMed  CAS  Google Scholar 

  131. H. A. Feldman, H. Torsvik, A. M. Gifford, and R. S. Lees. 1974. Low density lipoprotein turnover in homozygous hyperbetalipoproteinemia. Circulation 49/50(Suppl III):20.

    Google Scholar 

  132. R. P. Robertson, D. J. Gavareski, J. D. Henderson, D. Porte, Jr., and E. L. Bierman. 1973. Accelerated triglyceride secretion; a metabolic consequence of obesity. J. Clin. Invest. 52:1620–1626.

    PubMed  CAS  Google Scholar 

  133. J. Olefsky, G. M. Reaven, and J. W. Farquhar. 1974. Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J. Clin. Invest. 53:64–76.

    PubMed  CAS  Google Scholar 

  134. E. L. Bierman and D. Porte, Jr. 1968. Carbohydrate intolerance and lipemia. Ann. Intern. Med. 68:926–933.

    PubMed  CAS  Google Scholar 

  135. L. B. Salans, J. L. Knittle, and J. Hirsch. 1968. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest. 47:153–165.

    PubMed  CAS  Google Scholar 

  136. K. Block and W. Kramer. 1948. The effect of pyruvate and insulin on fatty acid synthesis in vitro. J. Biol. Chem. 173:811–812.

    Google Scholar 

  137. R. O. Brady and S. Gurin. 1950. Biosynthesis of labeled fatty acids and cholesterol in experimental diabetes. J. Biol Chem. 187:589–596.

    PubMed  CAS  Google Scholar 

  138. E. H. Ahrens, Jr., J. Hirsch, K. Oette, J. W. Farquhar, and Y. Stein. 1961. Carbohydrate-induced and fat-induced lipemia. Trans. Assoc. Am. Physicians 74:134–146.

    PubMed  CAS  Google Scholar 

  139. R. B. McGandy, D. M. Hegsted, and F. J. Stare. 1967. Dietary fats, carbohydrates and atherosclerotic vascular disease. N. Engl.J. Med. 277:186–192.

    PubMed  CAS  Google Scholar 

  140. P. J. Nestel. 1973. Triglyceride turnover in man; effects of dietary carbohydrate. Prog. Biochem. Pharmacol. 8:125–160.

    PubMed  CAS  Google Scholar 

  141. E. A. Nikkilä and M. Kekki. 1972. Effects of dietary fructose and sucrose on plasma triglycéride metabolism in patients with endogenous hypertriglyceridemia. Acta Med. Scand., Suppl. 542:221–227.

    Google Scholar 

  142. C.-H. Wu, M. Hoshi, and W. W. Shreeve. 1974. Human plasma triglyceride labeling after high-sucrose feeding. I. Incorporation of sucrose-U-14C. Metabolism 23:1125–1140.

    PubMed  CAS  Google Scholar 

  143. N. B. Ruderman, A. L. Jones, R. M. Krauss, and E. Shafrir. 1971. A biochemical and morphologic study of very low density lipoproteins in carbohydrate-induced hypertriglyceridemia. J. Clin. Invest. 50:1355–1368.

    PubMed  CAS  Google Scholar 

  144. E. H. Ahrens, Jr., J. Hirsch, W. Insull, Jr., T. T. Tsaltas, R. Blomstrand, and M. L. Peterson. 1957. The influence of dietary fats on serum-lipid levels in man. Lancet 1:943–950.

    Google Scholar 

  145. R. B. Moore, J. T. Anderson, H. L. Taylor, A. Keys, and I. D. Frantz, Jr. 1968. Effect of dietary fat on the fecal excretion of cholesterol and its degradation products in man. J. Clin. Invest. 47:1517–1534.

    PubMed  CAS  Google Scholar 

  146. P. J. Nestel, N. Havenstein, Y. Homma, T. W. Scott, and L. J. Cook. 1975. Increased sterol excretion with polyunsaturated-fat high-cholesterol diets. Metabolism 24:189–198.

    PubMed  CAS  Google Scholar 

  147. S. M. Grundy and E. H. Ahrens, Jr. 1970. The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man. J. Clin. Invest. 49:1135–1152.

    PubMed  CAS  Google Scholar 

  148. P. J. Nestel and D. Steinberg. 1963. Fate of palmitate and linoleate perfused through the isolated rat liver at high concentrations. J. Lipid Res. 4:461–469.

    PubMed  CAS  Google Scholar 

  149. D. N. Brindley, M. E. Smith, B. Sedgwick, and G. Hübscher. 1967. The effect of unsaturated fatty acids and the particle-free supernatant on the incorporation of palmitate into glycerides. Biochim. Biophys. Acta 144:285–295.

    PubMed  CAS  Google Scholar 

  150. P. J. Nestel and P. Barter. 1971. Metabolism of palmitic and linoleic acids in man: Differences in turnover and conversion to glycerides. Clin. Sci. 40:345–350.

    PubMed  CAS  Google Scholar 

  151. A. Chait, A. Onitiri, A. Nicoll, E. Rabaya, J. Davies, and B. Lewis. 1974. Reduction of serum triglyceride levels by polyunsaturated fat. Atherosclerosis 20:347–364.

    PubMed  CAS  Google Scholar 

  152. J. D. Brunzell, D. Porte, Jr., and E. L. Bierman. 1975. Reversible abnormalities in postheparin lipolytic activity during the late phase of release in diabetes mellitus (postheparin lipolytic activity in diabetes). Metabolism 24:1123–1137.

    PubMed  CAS  Google Scholar 

  153. H. R. Casdorph, ed. 1971. Treatment of the Hyperlipidemic States. Charles C. Thomas, Springfield, Illinois, 434 p.

    Google Scholar 

  154. R. S. Lees and D. E. Wilson. 1971. The treatment of hyperlipidemia. N. Engl.J. Med. 284:186–195.

    PubMed  CAS  Google Scholar 

  155. D. Kritchevsky. 1974. New drugs affecting lipid metabolism. Lipids 9:97–102.

    CAS  Google Scholar 

  156. R. I. Levy, D. S. Fredrickson, R. Shulman, D. W. Bilheimer, J. L. Breslow, N.J. Stone, S. E. Lux, H. R. Sloan, R. M. Krauss, and P. N. Herbert. 1972. Dietary and drug treatment of primary hyperlipoproteinemia. Ann. Intern. Med. 77:267–294.

    CAS  Google Scholar 

  157. R. I. Levy, J. Morganroth, and B. M. Rifkind. 1974. Treatment of hyperlipidemia. N. Engl.J. Med. 290:1295–1302.

    PubMed  CAS  Google Scholar 

  158. W. B. Parsons, Jr. 1971. Use of nicotinic acid compounds in treatment of hyperlipidemia. In: Treatment of the Hyperlipidemic States. Ed. by H. R. Casdorph, Charles C. Thomas. Springfield, Illinois, pp. 335–375.

    Google Scholar 

  159. A. A. Magide, N. B. Myant, and D. Reichl. 1975. The effect of nicotinic acid on the metabolism of the plasma lipoproteins of Rhesus monkeys. Atherosclerosis 21:205–215.

    PubMed  CAS  Google Scholar 

  160. E. A. Nikkilä. 1972. Effect of drugs on plasma triglyceride metabolism. Adv. Exp. Med. Biol. 26:113–123.

    PubMed  Google Scholar 

  161. L. A. Carlson and L. Orö. 1965. Persistence of the inhibitory effect of nicotinic acid on catecholamine-stimulated lipid mobilization during prolonged treatment with nicotinic acid. J. Atheroscler. Res. 5:436–439.

    PubMed  CAS  Google Scholar 

  162. L. A. Carlson, L. Orö, and J. Östman. 1968. Effect of a single dose of nicotinic acid on plasma lipids in patients with hyperlipoproteinemia. Acta Med. Scand. 183:457–465.

    PubMed  CAS  Google Scholar 

  163. G. Schlierf and E. Dorow. 1973. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J. Clin. Invest. 52:732–740.

    PubMed  CAS  Google Scholar 

  164. R. I. Levy and T. Langer. 1972. Hypolipidemic drugs and lipoprotein metabolism. Adv. Exp. Med. Biol. 26:155–163.

    PubMed  CAS  Google Scholar 

  165. N. Svedmyr and L. Harthon. 1970. Comparison between the absorption of nicotinic acid and pentaerythritol tetranicotinate (Perycit®) from ordinary and enterocoated tablets. Acta Pharmacol. Toxicol. 28:66–74.

    CAS  Google Scholar 

  166. A. H. Kissebah, P. W. Adams, P. Harrigan, and V. Wynn. 1974. The mechanism of action of clofibrate and tetranicotinoylfructose (Bradilan) on the kinetics of plasma free fatty acid and triglyceride transport in type IV and type V hypertriglyceridae-mia. Eur. J. Clin. Invest. 4:163–174.

    PubMed  CAS  Google Scholar 

  167. M. A. D’Costa and A. Angel. 1975. Inhibition of hormone-stimulated lipolysis by clofibrate; a possible mechanism for its hypolipidemic action. J. Clin. Invest. 55:138–148.

    PubMed  Google Scholar 

  168. H. S. Sodhi, B. J. Kudchodkar, and L. Horlick. 1971. Effect of chlorophenoxyisobutyrate on the metabolism of endogenous glycerides in man. Metabolism 20:309–318.

    PubMed  CAS  Google Scholar 

  169. B. M. Wolfe, J. P. Kane, R. J. Havel, and H. P. Brewster. 1973. Mechanism of the hypolipemic effect of clofibrate in postabsorptive man. J. Clin. Invest. 52:2146–2159.

    PubMed  CAS  Google Scholar 

  170. E. L. Bierman, J. D. Brunzell, J. D. Bagdade, R. L. Lerner, W. R. Hazzard, and D. Porte, Jr. 1970. On the mechanism of action of Atromid-S on triglyceride transport in man. Trans. Assoc. Am. Physicians 83:211–224.

    PubMed  CAS  Google Scholar 

  171. P. J. Scott and P. J. Hurley. 1969. Effect of clofibrate on low-density lipoprotein turnover in essential hypercholesterolaemia. J. Atheroscler. Res. 9:25–34.

    PubMed  CAS  Google Scholar 

  172. S. M. Grundy, E. H. Ahrens, Jr., G. Salen, P. H. Schreibman, and P. J. Nestel. 1972. Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J. Lipid Res. 13:531–551.

    PubMed  CAS  Google Scholar 

  173. W. E. Connor and D. S. Lin. 1974. The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans. J. Clin. Invest. 53:1062–1070.

    PubMed  CAS  Google Scholar 

  174. T. A. Miettinen, R. Pelkonen, E. A. Nikkilä, and O. Heinonen. 1967. Low excretion of fecal bile acids in a family with hypercholesterolemia. Acta Med. Scand. 182:645–650.

    PubMed  CAS  Google Scholar 

  175. K. Einarsson and K. Hellström. 1972. The formation of bile acids in patients with three types of hyperlipoproteinaemia. Eur. J. Clin. Invest. 2:225–230.

    PubMed  CAS  Google Scholar 

  176. M. G. Korman, R. D. Ellefson, and A. F. Hofmann. 1975. Fasting serum bile acid levels in the primary hyperlipoproteinemias. Mayo Clin. Proc. 50:76–78.

    PubMed  CAS  Google Scholar 

  177. S. A. Hashim and T. B. Van Itallie. 1965. Cholestyramine resin therapy for hypercholesteremia; clinical and metabolic studies. J. Am. Med. Assoc. 192:89–91.

    Google Scholar 

  178. R. B. Moore, C. A. Crane, and I. D. Frantz, Jr. 1968. Effect of cholestyramine on the fecal excretion of intravenously administered cholesterol-4-14C and its degradation products in a hypercholesterolemic patient. J. Clin. Invest. 47:1664–1671.

    PubMed  CAS  Google Scholar 

  179. J. T. Garbutt and T. J. Kenney. 1972. Effect of cholestyramine on bile acid metabolism in normal man. J. Clin. Invest. 51:2781–2789.

    PubMed  CAS  Google Scholar 

  180. K. Einarsson, K. Hellström, and M. Kallner. 1974. The effect of cholestyramine on the elimination of cholesterol as bile acids in patients with hyperlipoproteinaemia type II and IV. Eur. J. Clin. Invest. 4:405–410.

    PubMed  CAS  Google Scholar 

  181. D. S. Goodman and R. P. Noble. 1968. Turnover of plasma cholesterol in man. J. Clin. Invest. 47:231–241.

    PubMed  CAS  Google Scholar 

  182. A. Sedaghat and E. H. Ahrens, Jr. 1975. Lack of effect of cholestyramine on the pharmacokinetics of clofibrate in man. Eur. J. Clin. Invest. 5:177–185.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Fisher, W.R. (1976). The Hyper-β- and Hyperpre- β-lipoproteinemias. In: Day, C.E., Levy, R.S. (eds) Low Density Lipoproteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2250-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2250-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2252-8

  • Online ISBN: 978-1-4684-2250-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics