Skip to main content

Abstract

According to American Society for Testing and Materials (ASTM) defini tion(1) rubber is “a material that is capable of recovering from large deformations quickly and forcibly, and can be, or already is, modified to a state in which it is essentially insoluble (but can swell) in boiling solvent, such as benzene, methyl ethyl ketone, and ethanol—toluene azeotrope. A rubber in its modified state, free of diluents, retracts within one minute to less than 1.5 times its original length after being stretched at room temperature (18 to 29°C) to twice its length and held for one minute before release.” This definition includes not only the more common types of rubbers such as styrene—butadiene, natural, neoprene, and the like, but flexible poly urethanes and some of the flexible plastics. In this chapter these latter two categories are not included because they are handled in other parts of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM, 1971 Annual Book of Standards; Rubber, Carbon Black, Gaskets; Part 28: D-1566.

    Google Scholar 

  2. T. H. Rogers, Encyclopedia of Chem. Technology ,Vol. 17, 2d ed., Wiley-Interscience (1968).

    Google Scholar 

  3. A. K. Sircar and T. G. Lamond, Rubber Chem. Tech. 45(1) 329–345, 1972.

    Article  CAS  Google Scholar 

  4. D. J. Rasbash, Smoke and toxic products produced at fires, Trans. J. Plast. Inst. # 2, 55–61, Jan. 1967.

    Google Scholar 

  5. S. Straus et al., J. Res. Nat’l. Bur. Std. 42, 499 (1949).

    Google Scholar 

  6. C. J. Hilado and W. Patten, An evaluation of safety standard no. 302, J. Cell. Plast. (Sept/Oct 1971).

    Google Scholar 

  7. Bureau of Mines, Title 30, Chap. 1, Sub E, Part 34.10.

    Google Scholar 

  8. J. L. Isaacs, The oxygen flammability test, J. Fire Flam. 1, 43 (1970).

    Google Scholar 

  9. The Los Angeles Fire Department, Operation School Burning ,No. 2, NFPA, Boston (1961).

    Google Scholar 

  10. J. Autian, Toxicological aspects of flammability and combustion of polymeric materials, J. Fire Flam. 1, 239 (1970).

    CAS  Google Scholar 

  11. K. C. Hecker, R. E. Fruzzetti, and E. A. Sinclair, paper delivered at Rubber Division ACS, Boston, April 27, Rubber Age ,April 1973, p. 25.

    Google Scholar 

  12. F. J. Rarig and A. J. Bartosic, Special Technical Presentation, No. 422, ASTM, (1967).

    Google Scholar 

  13. A Method of Measuring Smoke Density, National Fire Prevention Association, Boston, Mass. (Jan. 1964).

    Google Scholar 

  14. A. A. Loehr and P. F. Levy, Measurement of Smoke Density by TGA/Photometric Analysis, American Laboratory (Jan. 1972).

    Google Scholar 

  15. J. R. Gaskill, Smoke development in polymers during pyrolysis or combustion, J. Fire Flam. 1, 183 (July 1970).

    Google Scholar 

  16. L. G. Lmhof, Evaluation of New Materials for Flame Retardant Applications, Regional Technical Conf SPE Oct. 14, 1971, Newark Section, p. 7.

    Google Scholar 

  17. V. A. Pattison and Hindersinn; Kirk-Othmer Encyclopedia of Chemical Technology ,Vol. 7, p. 1 Wiley-Interscience, New York (1967).

    Google Scholar 

  18. J. J. Pitts, Antimony-halogen synergistic reactions in fire retardants, J. Fire Flam. 3, 51 (1972).

    CAS  Google Scholar 

  19. J. W. Lyons, Mechanisms of fire retardation with Phosphorus compounds, J. Fire Flam. 1, 302 (Oct 1970).

    CAS  Google Scholar 

  20. J. K. Jacques, Trans. J. Plast. Inst. 1–67 (Eng).

    Google Scholar 

  21. E. G. Cockbain, T. D. Pendle, E. C. Pole and D. T. Turner, Proc. Rubber Technol. Conf ,4th, London, 1962.

    Google Scholar 

  22. S. Straus and S. L. Madorsky, J. Res. Natl. Bur. Std. 61, 77 (1958).

    CAS  Google Scholar 

  23. L. A. Wood, in Synthetic Rubber ,(G. S. Whitby, ed.) Wiley, New York (1954).

    Google Scholar 

  24. Dover Technical Application Data Bull. 535 (April 1968).

    Google Scholar 

  25. R. S. Nelson, R. S. Jessup and D. E. Roberts, J. Res. Natl. Bur. Std. 48, 206 (1952).

    CAS  Google Scholar 

  26. T. P. Dolezal et al., Rubber Age 104 (2), 37 (1972).

    CAS  Google Scholar 

  27. H. Rosen et al., J. Appl. Polym. Sci. 13(8), 1721–1728 (1968).

    Article  Google Scholar 

  28. S. L. Madorsky, Thermal Decomposition of Organic Polymers ,Wiley-Intersciene Pub lishers, New York (1964).

    Google Scholar 

  29. G. S. Parks and J. R. Mosley, J. Chem. Phys. 17, 691 (1949).

    CAS  Google Scholar 

  30. R. T. Morrisey, Rubber Chem. Tech. 44(4), 1025–1042 (1971).

    Article  Google Scholar 

  31. G. S. Skinner and J. H. McNeal, Ind. Eng. Chem. 40, 2303–2308.

    Google Scholar 

  32. R. N. Conklin, Rubber News 2(6), 21 (1962).

    Google Scholar 

  33. I. T. Gridunov et al., Khim. I. Khim. Tekhnol. 5(3), 821 (1962).

    CAS  Google Scholar 

  34. M. V. Polemkina and L. N. Kireenkova, Kauch. i Resina 25(9), 25–27 (1966).

    Google Scholar 

  35. C. E. Mc-Cormack, Rubber Age ,Flame retardant compositions of neoprene and hypalon. pp. 27–36 (June 1972).

    Google Scholar 

  36. L. A. Wall, J. Res. Natl. Bur. Std. 41, 315 (1948).

    CAS  Google Scholar 

  37. F. J. Asti and A. L. O’Meara, paper delivered at Div. Rubber Chemistry, ACS (April 1968).

    Google Scholar 

  38. R. E. Fruzzetti, unpublished data.

    Google Scholar 

  39. J. C. Caprini, Society for the Advancement of Material and Processing Engineering # 7 (1964).

    Google Scholar 

  40. Anon., Tough silicones, Chem. Week 96(24), 76 (1965).

    Google Scholar 

  41. Germ. Patent 1,221,010 (1966).

    Google Scholar 

  42. T. L. Laur and L. B. Guy, Rubber Age ,(Dec. 1970).

    Google Scholar 

  43. Anon., Fire resistant silicone rubber foam, Mater. Des. Eng. 62(1), 5 (1965).

    Google Scholar 

  44. H. J. Lanning, Rubber Plast. Age 37, 227–232 (1956).

    CAS  Google Scholar 

  45. D. A. Smith, Kautsch. Gummi Kunstst. 19, 477 (1966).

    CAS  Google Scholar 

  46. D. C. Miles, Rubber Plast. Weekly 141, 536 (1961).

    Google Scholar 

  47. L. A. Wall and S. Straus, Pyrolysis of fluorocarbon polymers, J. Res. Natl. Bur. Std. 65A, 227 (1961).

    Google Scholar 

  48. R. R. Hindersinn and G. Wagner, in Encyclopedia of Polymer Science and Technology ,Vol. 7, pp. 1–64 Wiley-Interscience, New York (1967).

    CAS  Google Scholar 

  49. N. B. Levine, Appl. Polym. Sym. 11 ,pp. 135–156 (1959) (Eng).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Rogers, T.H., Fruzzetti, R.E. (1975). Flame Retardance of Rubbers. In: Lewin, M., Atlas, S.M., Pearce, E.M. (eds) Flame-Retardant Polymeric Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2148-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2148-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2150-7

  • Online ISBN: 978-1-4684-2148-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics