Skip to main content

A Quantum Electrodynamic Investigation of the Jaynes-Crisp-Stroud Approach to Spontaneous Emission

  • Conference paper
Coherence and Quantum Optics

Abstract

Motivated by the work of Jaynes and co-workers, [1] the old problem of atomic level shifts and widths has recently begun to be re-examined. While QED is a highly successful theory (indeed the only workable field theory we have), it is still beset with self-energy infinities ultimately associated with the point-like nature of the electron. These are removed from the public view by the process of renormalization, in the hope that eventually some high frequency cut-off will be found to make the renormalization constants finite: such modifications proposed usually imply a radius to the electron. In the usual approach to QED, perturbation theory is used. Jaynes, prompted by the great progress made in theory and experiments on atoms interacting with electromagnetic fields, has re-investigated the problem of spontaneous emission by solving the relevant semi-classical equations of motion for the interacting field-atom system directly. An interesting product of such an approach (other than the novel time-dependence) is the non-appearance of divergences: the finite size of the atomic charge distribution removes the point like singularity when retardation is taken into account.

Research partially supported by the U.S. Army Research Office (Durham) and the U.S. Atomic Energy Commission

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. M.D. Crisp and E.T. Jaynes, Phys. Rev. 179, 1253 (1969);

    Article  ADS  Google Scholar 

  2. C.R. Stroud, Jr., and E.T. Jaynes, Phys. Rev. A1, 106 (1970).

    Article  ADS  Google Scholar 

  3. We have directly verified by explicit calculation that all of the usual results of QED (including the divergent behavior of the level shift) are obtained using the present method but neglecting retardation. However, retardation is the crucial factor in deriving the QED analogue of the Jaynes-Crisp level shift. +

    Google Scholar 

  4. The integrals occurring in the evaluation of A± are of the same form as that in equation (26) and are performed using the same approximations. Such a derivation closely follows those of reference 1.

    Google Scholar 

  5. E.A. Power, Introductory Quantum Electrodynamics ( American Elsevier Publishing Company, New York, 1965 ).

    Google Scholar 

  6. This is justified by the reduction in the degree of divergence found using a relativistic treatment, since at ℏck≳mc2, pair states remove the high energy contribution to ΔL which then becomes convergent; for the same reason δm becomes logarithmically divergent.

    Google Scholar 

  7. A result apparently well known in the older literature due to Waller shows that if one takes the non-relativistic formalism seriously and includes retardation and recoil energies, the free electron self-energy diverges only logarithmically. It is known that the corresponding ΔL for a real hydrogen atom converges; Lamb has pointed out that this effectively cuts the integrals off at twice Bethe’s cut-off and disagrees with experiment.

    Google Scholar 

  8. I. Waller, Zeits. fur Phys. 62, 673 (1930).

    Article  ADS  Google Scholar 

  9. N.M Kroll and W.E. Lamb, Jr., Phys. Rev. 75, 388 (1949).

    Article  ADS  MATH  Google Scholar 

  10. It is amusing, but without physical significance, that if the RWA is imposed consistently on (31) then the (incorrect) result found by using the RWA in perturbation theory, δωRWA+, is duplicated by our Heisenberg equation result.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Ackerhalt, J.R., Eberly, J.H., Knight, P.L. (1973). A Quantum Electrodynamic Investigation of the Jaynes-Crisp-Stroud Approach to Spontaneous Emission. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2034-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2034-0_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2036-4

  • Online ISBN: 978-1-4684-2034-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics