Skip to main content

Master Equations in the Theory of Incoherent and Coherent Spontaneous Emission

  • Conference paper
Coherence and Quantum Optics

Abstract

The subject of spontaneous emission is a very old one. Recently this has received a whole new momentum because it has become possible to observe some of the peculiar phenomena associated with it. Of particular interest is the phenomenon of superradiance which was discovered by Dicke [1] in 1954. He found that the radiation rate from a collection of identical two-level atoms or molecules is, under certain circumstances depending on the excitation of the system, proportional to the square of the number of atoms. Dicke employed the second order perturbation theory to calculate the characteristics of the emitted radiation. We would, of course, like a description which enables us to calculate time dependent statistical properties.

Invited paper given at “Third Rochester Conference on Coherence and Quantum Optics”, June 21–23, 1972 Rochester, New York.

On leave of absence from the Department of Physics and Astronomy University of Rochester, Rochester, New York 14627

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. R.H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  2. V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930), ibid., 65 18 (1931).

    Article  ADS  Google Scholar 

  3. V. Weisskopf, Ann. Physik 9, 23 (1931), Z. Physik 85, 451 (1933).

    Google Scholar 

  4. W. Heitler and S.T. Ma, Proc. Roy. Ir. Ac. 52, 109 (1949); W. Heitler Quantum Theory of Radiation(Oxford University Press, 3rd edition) § 16.

    MathSciNet  Google Scholar 

  5. M.L. Goldberger and K.M. Watson Collision Theory (John Wiley New York, 1964), Chapter 8: Generalizations of this method are given in A.S. Goldhaber and K.M. Watson, Phys. Rev.160, 1151 (1967); L. Mower, Phys. Rev. 165, 145 (1968).

    MATH  Google Scholar 

  6. F.E. Low, Phys. Rev. 88, 53 (1952).

    Article  ADS  MATH  Google Scholar 

  7. E.T. Jaynes and F.W. Cummings, Proc.IEEE 51, 89 (1963); M.D. Crisp and E.T. Jaynes, Phys. Rev.179, 1253 (1969); C.R. Stroud and E.T. Jaynes, Phys. Rev. A1, 106 (1970)

    Article  Google Scholar 

  8. C.S. Chang and P. Stehle, Phys. Rev. A4, 641 (1971).

    Article  ADS  Google Scholar 

  9. M.Dillard and H.R. Robl, Phys. Rev. 184, 312 (1969).

    Article  ADS  Google Scholar 

  10. G.S. Agarwal Phys. Rev. A2, 2038 (1970).

    Article  ADS  Google Scholar 

  11. G.S. Agarwal Phys. Rev. A3, 1783 (1971);

    ADS  Google Scholar 

  12. G.S. Agarwal Nuovo Cim. Lett. 2, 49 (1971);

    Google Scholar 

  13. G.S. Agarwal Nuovo Cim. Lett. 2, 49 (1971);

    Google Scholar 

  14. G.S. Agarwal Phys. Rev. A4, 1778 (1971);

    ADS  Google Scholar 

  15. G.S. Agarwal Phys.Rev. A7 (1973)[in press]. Many of the results, which I would present here, have already appeared in these references.

    Google Scholar 

  16. R.W. Zwanzig in Lectures in Theoretical Physics, ed. W.E. Brit- tin et al (Wiley, New York 1961) Vol. Ill; Physica 33, 119 (1964); see also G.S. Agarwal, Phys. Rev. 178, 2025 (1969).

    Google Scholar 

  17. For the use of such methods to other problems in quantum optics, we refer to G.S. Agarwal in Progress in Optics, ed. E. Wolf (North-Holland Publ. Co., Amsterdam) Vol. XI (in press).

    Google Scholar 

  18. R.H. Lehmberg, Phys. Rev. A2, 883 (1970); ibid A2, 889 (1970).

    ADS  Google Scholar 

  19. R. Bonifacio, P. Schwendimann and F. Haake, Phys. Rev. A4, 302 (1971); ibid A4, 854 (1971); R. Bonifacio and P. Schwendimann, Nuovo Cim. Letters 3, 512 (1970).

    Google Scholar 

  20. See e. g. H. Haken in Handbuch der Physik ed. S. Flügge (Springer, Berlin 1970), Vol. XXV/2c, p. 28.

    Google Scholar 

  21. See e. g. E.A. Power and S. Zienau, Phil. Trans. Roy. Soc. 251, 427 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E.A. Power, Nuovo Cim 6, 7 (1957); M.J. Stephen, J. Chem. Phys. 40, 669 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Lax, Phys. Rev. 172, 350 (1968),

    Article  ADS  Google Scholar 

  24. J.H. Eberly and N.E. Rehler,Phys. Lett. 29A, 142 (1969); N.E. Rehler and J.H. Eberly,Phys. Rev. A3, 1735 (1971).

    Google Scholar 

  25. cf. ref. 13.

    Google Scholar 

  26. This part of our presentation follows closely ref. 10c.

    Google Scholar 

  27. The author would like to thank Dr. F. Haake for a discussion in which this point came up.

    Google Scholar 

  28. C.R. Stroud, J.H. Eberly, W.L. Lama and L. Mandel, Phys. Rev. A5, 1094 (1971).

    Google Scholar 

  29. F.T. Arecchi, G.P. Banfi and V. Fassato-Bellani, Nuovo Cim. (in print).

    Google Scholar 

  30. E.C.G. Sudarshan, Phys. Rev. Letters 10, 277 (1965); R. J. Glauber, Phys. R. v.131,2766 (1963). For the general transformation of the operator equations into c-number equations, see G.S. Agarwal and E. Wolf, Phys. Rev. Lett. 21, 180 (1968); Phys. Rev. D2, 2187 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  31. W.L. Lama, R. Jodoin and L. Mandel, Am. J. Phys. 40, 32 (1972).

    Article  ADS  Google Scholar 

  32. Starting from a different viewpoint this master equation has also been obtained by Bonifacio etal, ref. 14. (a) Ω (2)ij , in principle, depends on the positions of ith and jth atom even for small systems. The permutation symmetry is also violated and it does not appear anymore convenient to work with the collective operators. However, there may be geometries for which Ω (2)ij ≈ Ω, i. e. it is on the average independent of i,j (cf. ref. 23). In such cases the solution (54) is modified to

    Google Scholar 

  33. A.M. Ponte Goncalves and A. Tallet, Phys. Rev. A4, 1319 (1971).

    Article  ADS  Google Scholar 

  34. Such decoupling procedures are, of course, very familiar in non-equilibrium statistical mechanics, see e. g. D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960); see also L.P. Kadanoff and G. Baym Quantum Statistical Mechanics ( Benjamin Inc., New York 1962 ).

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Bonifacio and M. Gronchi, Nuovo Cim. Lett.1, 1105 (1971); V. DeGiorgio, Opt. Commun. 2, 362 (1971).

    Article  Google Scholar 

  36. N.M. Kroll in Quantum Optics and Quantum Electronics ed. Cohen Tannoudji et al. (Gordon and Breach N.Y. 1965 ) p. 47.

    Google Scholar 

  37. cf. ref. (8); J.E. Walsch, Phys. Rev. Lett. 27, 208 (1971); G. Barton, Phys. Rev. A5, 468 (1972).

    Article  Google Scholar 

  38. see e. g. ref. 12.

    Google Scholar 

  39. P.R. Fontana and D.J. Lynch, Phys. Rev. A2, 347 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Agarwal, G.S. (1973). Master Equations in the Theory of Incoherent and Coherent Spontaneous Emission. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2034-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2034-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2036-4

  • Online ISBN: 978-1-4684-2034-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics