Skip to main content

The Role of Lipid-Linked Activated Sugars in Glycosylation Reactions

  • Chapter
Membrane Structure and Mechanisms of Biological Energy Transduction
  • 100 Accesses

Abstract

In the prokaryotic eubacteria the single cytoplasmic membrane appears to serve many of the functions performed by the numerous subcellular organelles found in eukaryotic organisms. Thus, the cytoplasmic membrane of the bacteria is the site of oxidative phosphorylation; it is the site of active transport; and it is the site of biosynthesis of many of the macromolecular components of the cell surface. In this chapter attention will be focused on biosynthesis of the sugar-containing macromolecules that ultimately reside within or outside the membrane surface. More specifically it will deal with the mechanism of energy utilization in the biosynthetic processes involving glycosyl transfers from high energy, lipid-linked sugar intermediates first found in the eubacteria. It should be noted, however, that although it is in the prokaryotic bacteria where such systems have been most definitely established, preliminary reports suggest that analogous reactions may occur in eukaryotic cells.1,2,3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Villimez, Biochem. Biophys. Res. Commun., 40 (1970) 636.

    Article  Google Scholar 

  2. J. F. Caccam, J. J. Jackson and C. H. Eylar, Biochem. Biophys. Res. Commun., 35 (1969) 505.

    Article  PubMed  CAS  Google Scholar 

  3. N. H. Behrens, A. J. Parodi, L. F. Leloir and C. R. Krisman, Arch. Biochem. Biophys., 143 (1971) 375.

    Article  PubMed  CAS  Google Scholar 

  4. L. F. Leloir, J. M. Olavarria, S. H. Goldenberg and H. Carminatti, Arch. Biochem. Biophys., 81 (1959) 508.

    Article  PubMed  CAS  Google Scholar 

  5. J. S. Anderson, M. Matsuhashi, M. A. Haskin, and J. L. Strominger, Proc. Natn. Acad. Sci., 53 (1965) 881.

    Article  CAS  Google Scholar 

  6. M. G. Heydanek, Jr., W. G. Struve and F. C. Neuhaus, Biochem., 8 (1969) 1214.

    Article  CAS  Google Scholar 

  7. J. S. Anderson, M. Matsuhashi, M. A. Haskin and J. L. Strominger, J. Biol. Chem., 242 (1967) 3180.

    PubMed  CAS  Google Scholar 

  8. M. Matsuhashi, C. P. Dietrick and J. L. Strominger, Proc. Natn. Acad. Sci., 54 (1965) 587.

    Article  CAS  Google Scholar 

  9. T. Kamiryo and M. Matsuhashi, Biochem. Biophys. Res. Commun., 36 (1969) 215.

    Article  PubMed  CAS  Google Scholar 

  10. G. Siewert and J. L. Strominger, Proc. Natn. Acad. Sci., 57 (1967) 767.

    Article  CAS  Google Scholar 

  11. K. J. Stone and J. L. Strominger, Proc. Natn. Acad. Sci., 68 (1971) 3223.

    Article  CAS  Google Scholar 

  12. J. Ghuysen, Bacteriol. Rev., 32 (1968) 425.

    PubMed  CAS  Google Scholar 

  13. M. J. Osborn, Ann. Rev. Biochem., 38 (1969) 501.

    Article  PubMed  CAS  Google Scholar 

  14. E. C. Heath, Anm. Rev. Biochem., 40 (1971) 29.

    Article  CAS  Google Scholar 

  15. A. Wright and S. Kanegasaki, Physiol. Rev., 51 (1971) 748.

    PubMed  CAS  Google Scholar 

  16. I. M. Weiner, T. Higuchi, L. Rothfield, M. Saltmarsh-Andrew, M. J. Osborn and B. L. Horecker, Proc. Natn. Acad. Sci., 54 (1965) 228.

    Article  CAS  Google Scholar 

  17. A. Wright, M. Dankert and P. W. Robbins, Proc. Natn. Acad. Sci., 54 (1965) 235.

    Article  CAS  Google Scholar 

  18. M. Dankert, A. Wright, W. S. Kelley and P. W. Robbins, Arch. Biochem. Biophys., 116 (1966) 425.

    Article  PubMed  CAS  Google Scholar 

  19. S. Kanegasaki and A. Wright, Proc. Natn. Acad. Sci., 67 (1970) 951.

    Article  CAS  Google Scholar 

  20. M. J. Osborn and I. M. Weiner, J. Biol. Chem., 243 (1968) 2631

    PubMed  CAS  Google Scholar 

  21. J. L. Kent and M. J. Osborn, Biochem., 7 (1968) 4419.

    Article  CAS  Google Scholar 

  22. P. W. Robbins and M. J. Osborn, unpublished observations, cited in ref. 13.

    Google Scholar 

  23. P. W. Robbins, D. Bray, M. Dankert, and A. Wright, Science, 158 (1967) 1536.

    Article  PubMed  CAS  Google Scholar 

  24. A. Wright, M. Dankert, P. Fennessey, P. W. Robbins, Proc. Natn. Acad. Sci., 57 (1967) 1798.

    Article  CAS  Google Scholar 

  25. Y. Higashi, J. L. Strominger and C. C. Sweeley, Proc. Natn. Acad. Sci., 57 (1967) 1878.

    Article  CAS  Google Scholar 

  26. A. Wright, Federation Proc., 28 (1969) 658.

    Google Scholar 

  27. A. Wright, J. Bacteriol., 105 (1971) 927.

    PubMed  CAS  Google Scholar 

  28. H. Nikaido, K. Nikaido, T. Nakae and P. H. Mäkelä, J. Biol. Chem., 246 (1971) 3902.

    PubMed  CAS  Google Scholar 

  29. K. Nikaido and H. Nikaido, J. Biol. Chem., 246 (1971) 3912.

    PubMed  CAS  Google Scholar 

  30. M. Takeshita and P. H. Mäkelä, J. Biol. Chem., 246 (1971) 3920.

    PubMed  CAS  Google Scholar 

  31. M. Scher and W. J. Lennarz, J. Biol. Chem., 244 (1969) 2777.

    PubMed  CAS  Google Scholar 

  32. M. Lahav, T. H. Chiu and W. J. Lennarz, J. Biol. Chem., 244 (1969) 5890.

    PubMed  CAS  Google Scholar 

  33. M. Scher, W.J. Lennarz and C. C. Sweeley, Proc. Natn. Acad. Sci., 59 (1968) 1313.

    Article  CAS  Google Scholar 

  34. L. F. Leloir, M. A. R. de Fekete and C. E. Cardini, J. Biol. Chem., 236 (1961) 636.

    PubMed  CAS  Google Scholar 

  35. F. A. Troy, F. E. Frerman and E. C. Heath, J. Biol. Chem., 246 (1971) 118.

    PubMed  CAS  Google Scholar 

  36. F. E. Frerman, E. C. Heath, M. Lahav, T. H. Chiu and W. J. Lennarz, unpublished observations cited in ref. 35.

    Google Scholar 

  37. I. W. Sutherland and M. Norval, Biochem. J., 120 (1970) 567.

    PubMed  CAS  Google Scholar 

  38. L. J. Douglas and J. Baddiley, FEBS Letters, 1 (1968) 114.

    Article  PubMed  CAS  Google Scholar 

  39. D. Brooks and J. Baddiley, Biochem. J., 113 (1969) 635.

    PubMed  CAS  Google Scholar 

  40. D. Brooks and J. Baddiley, Biochem. J., 115 (1969) 307.

    PubMed  CAS  Google Scholar 

  41. R. J. Watkinson, H. Hussey and J. Baddiley, Nature New Biology, 229 (1971) 57.

    PubMed  CAS  Google Scholar 

  42. M. Stow, B. J. Starkey, S. C. Hancock and J. Baddiley, Nature New Biology, 229 (1971) 56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Publishing Company Limited

About this chapter

Cite this chapter

Lennarz, W.J., Scher, M.G. (1972). The Role of Lipid-Linked Activated Sugars in Glycosylation Reactions. In: Avery, J. (eds) Membrane Structure and Mechanisms of Biological Energy Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2016-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2016-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2018-0

  • Online ISBN: 978-1-4684-2016-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics