Skip to main content

Abstract

An approach to the problem of mitochondrial energy transduction is outlined. The approach is based on the fundamental assumption that there is an intimate relation between the mechanisms of enzyme catalysis and energy transduction. The implications of this assumption for the coupling of two chemical reactions and the coupling of a chemical reaction to an ion flux are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Green, Proc. Nat. Acad. Sci. U.S., 67 (1970) 544.

    Article  CAS  Google Scholar 

  2. D. E. Green and J. H. Young, Amer. Sci., 59 (1971) 92.

    PubMed  CAS  Google Scholar 

  3. R. Lumry, in: A Treatise on Electron and Coupled Energy Transfer in Biological Systems, T. King and M. Klingenberg (eds.), Dekker, New York, 1969.

    Google Scholar 

  4. P. D. Boyer, in: Biological Oxidations, T. P. Singer (ed.), Interscience, New York, 1968, p. 193.

    Google Scholar 

  5. R. Lumry and R. Biltonen, in: Structure and Stability of Biological Macromolecules, S. N. Timasheff, G. D. Fasman, (eds.), Dekker, New York, 1969, p. 65.

    Google Scholar 

  6. W. Jencks, in: Current Aspects of Biochemical Energetics: Fritz Lipman Dedicatory Volume, N. Kaplan and E. Kennedy (eds.), Academic Press, New York, 1966, p. 272.

    Google Scholar 

  7. D. Koshland, Jr., Proc. Nat. Acad. Sci. U.S., 44 (1958) 98;

    Article  CAS  Google Scholar 

  8. D. Koshland, Jr., Cold Spring Harbor Symp. Quat. Biol. 28 (1963) 473.

    Article  Google Scholar 

  9. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd Ed., Interscience, New York, 1967, p. 25.

    Google Scholar 

  10. H. Rottenberg, S. R. Caplan and A. Essig, in: Membranes and Ion Transport, Vol, 1, E. Bittar (ed.), Interscience, New York, 1970, p. 165.

    Google Scholar 

  11. M. Klingenberg and P. Schollmeyer, Proc, 5th Intern. Congr. Biochem., Moscow 1961, Vol. 5, Pergamon, London, 1963, p. 46.

    Google Scholar 

  12. S. Muraoka and E. C. Slater, Biochim. Biophys. Acta, 180 (1969) 221.

    Article  PubMed  CAS  Google Scholar 

  13. G. F. Azzone and S. Massari, Eur. J. Biochem., 19 (1971) 97.

    Article  PubMed  CAS  Google Scholar 

  14. E. Rossi and G. F. Azzone, Eur. J. Biochem., 12 (1970) 319.

    Article  PubMed  CAS  Google Scholar 

  15. R. S. Cockrell, E. J. Harris and R. Pressman, Nature, 215 (1967) 1487.

    Article  PubMed  CAS  Google Scholar 

  16. R. A. Reid, J. Moyle and P. Mitchell, Nature, 212 (1966) 257.

    Article  PubMed  CAS  Google Scholar 

  17. L. Danielson and L. Ernster, in: Energy-Linked Functions of Mitochondria, B. Chance (ed.), Academic Press, New York, 1963, p. 157.

    Google Scholar 

  18. R. J. van de Stadt, F. J. R. M. Nienwenhuis and K. van Dam, Biochim. Biophys. Acta, 234 (1971) 173.

    Article  PubMed  Google Scholar 

  19. L. L. Grinius, A. A. Jasaitis, Y. P. Kadziauskas, E. A. Liberman, V. P. Skulachev, V.P. Topali, L. M. Tsofina and M. A. Vladimirova, Biochim. Biophys. Acta, 216 (1970) 1.

    Article  PubMed  CAS  Google Scholar 

  20. L. Ernster and C. P. Lee, Ann. Rev. Biochem., 33 (1964) 729.

    Article  PubMed  CAS  Google Scholar 

  21. M. Klingenberg, Essays Biochem., 6 (1970) 119.

    PubMed  CAS  Google Scholar 

  22. J. H. Young (manuscript in preparation).

    Google Scholar 

  23. P. D. Boyer, in: Current Topics in Bioenergetics, Vol. II, D. R. Sanadi (ed.), Academic Press, New York, 1967, p. 99.

    Google Scholar 

  24. P. Mitchell, Biol. Rev. Cambridge Phil. Soc., 41 (1966) 445.

    Article  CAS  Google Scholar 

  25. J. H. Young, G. A. Blondin and D. E. Green, in: Physical Principles of Neuronal and Organismic Behavior, Gordon and Breach, New York, in press.

    Google Scholar 

  26. J. H. Young, G. A. Blondin and D. E. Green, Proc. Nat. Acad. Sci. USA, 68 (1971) 1364.

    Article  PubMed  CAS  Google Scholar 

  27. E. A. Liberman and V. P. Skulachev, Biochim. Biophys. Acta, 216 (1970) 30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Publishing Company Limited

About this chapter

Cite this chapter

Young, J.H. (1972). An Enzymological Approach to Mitochondrial Energy Transduction. In: Avery, J. (eds) Membrane Structure and Mechanisms of Biological Energy Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2016-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2016-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2018-0

  • Online ISBN: 978-1-4684-2016-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics