Skip to main content

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

Until very recently, amorphous solids were a good deal more common in nature than in solid state theory textbooks. This can be only partially excused on the grounds that they are embarrassingly difficult substances to analyse theoretically in any fundamental way. The lack of periodicity (and hence Bloch’s Theorem) presents severe obstacles to the formulation of a theory that is at once fundamental, rigorous, realistic and tractable. One must always hope for the last of these qualities but the other three can hardly be attained simultaneously, so the problem must necessarily be investigated from different (complementary rather than competing) points of view, each of which has its own particular merits. We shall review these briefly in the next section, before embarking on an exposition of our own recent efforts. However it is first necessary to say something about structure. This obvious first step in the description of a solid is, in the case of amorphous solids, still a rather hesitant and uncertain one. While many of the remarks which we shall make are of wide validity, it is appropriate at this point to define our field of immediate interest as being confined to the very simplest amorphous semiconductors, namely Si, Ge and related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Polk, J. Non- -crystall. Solids 5., 365 (1971).

    Article  CAS  Google Scholar 

  2. M. L. Rudee and A. Howie, Phil. Mag. 25, 1001 (1972).

    Article  CAS  Google Scholar 

  3. R. H. Wentorf, Jr. and J. S. Kasper, Science 139, 338 (1963)

    Article  CAS  Google Scholar 

  4. J. S. Kasper and S. M. Richards, Acta Cryst. 17, 752 (1964).

    Article  CAS  Google Scholar 

  5. F. Herman and J. P. Van Dyke, Phys. Rev. Lett. 21, 15 75 (1968).

    Google Scholar 

  6. D. Brust, Phys. Rev. Lett. 23, 1232 (1969).

    Article  CAS  Google Scholar 

  7. B. Kramer, Phys. Stat. Sol. 41, 649 (1970).

    Article  CAS  Google Scholar 

  8. T. C. McGill and J. Klima, Phys. Rev. B4, 1517 (1972).

    Google Scholar 

  9. J. Keller, J. Phys. C4, 85 (1971).

    Google Scholar 

  10. M. Hulin and N. Pottier, Phys. Stat. Sol., 51, 613 (1972).

    Article  CAS  Google Scholar 

  11. For references to work on quantitative disorder, see the papers by Freed, and Eggarter and Kirkpatrick in this volume.

    Google Scholar 

  12. G. Leman and J. Friedel, J. Appl. Phys. 33, Supp. 1, 281 (1962).

    Article  CAS  Google Scholar 

  13. M. F. Thorpe and D. Weaire, Phys. Rev. B4, 3518 (1971).

    Article  Google Scholar 

  14. J. Straley, to be published (1972).

    Google Scholar 

  15. M. Hulin, to be published (1972).

    Google Scholar 

  16. D. Weaire and M. F. Thorpe, Phys. Rev. B4, 2508 (19 71).

    Article  Google Scholar 

  17. The proof of the existence of the gap which was given in ref. (18) was rather different. In addition to the work of Hulin and Straley mentioned in the previous section, alternative proofs have been advanced by Heine (19) and Ehrenreich and Schwartz (20).

    Google Scholar 

  18. D. Weaire, Phys. Rev. Lett. 26, 1541 (1971).

    Article  CAS  Google Scholar 

  19. V. Heine, J. Phys. C4, L221 (1971).

    CAS  Google Scholar 

  20. H. Ehrenreich and L. Schwartz, to be published (1972).

    Google Scholar 

  21. R. Alben, S. Goldstein, M. F. Thorpe, and D. Weaire, to be published (1972).

    Google Scholar 

  22. F. Cyrot-Lackmann, J. Phys. C5, 300 (1972).

    Google Scholar 

  23. M. F. Thorpe, D. Weaire and R. Alben, Phys. Rev. to be published (1972).

    Google Scholar 

  24. For a direct proof, see M. F. Thorpe, J. Math. Phys. 13, 294 (1972).

    Article  Google Scholar 

  25. I. B. Ortenburger, W. E. Rudge, and F. Herman, J. Non-Crystall. Solids 8-10, 653 (1972).

    Article  Google Scholar 

  26. Unpublished—quoted by R. C. Eden, Thesis, Stanford University (1967).

    Google Scholar 

  27. T. M. Donovan and W. E. Spicer, Phys. Rev. Lett. 21, 1572 (1968).

    Article  CAS  Google Scholar 

  28. D. M. Kaplan, M. H. Brodsky, J. F. Ziegler, to be published (1972).

    Google Scholar 

  29. G. Wiech and E. Zöpf, Proceedings of the International Conference on Band Structure Spectroscopy of Metals and Alloys, Glasgow (1971), to be published.

    Google Scholar 

  30. F. C. Brown and O.. P. Rustgi, Phys. Rev. Letters 28, 497 (1972).

    Article  Google Scholar 

  31. J. C. Phillips, Physica Status Solidi (b) 44, K1 (1971).

    Article  Google Scholar 

  32. J. P. Van Dyke, Phys. Rev. B5, 4206 (1972).

    Article  Google Scholar 

  33. M. A. Reilly, J. Chem. Phys. Solids 31, 1041 (1970).

    Article  CAS  Google Scholar 

  34. W. Fischer in Advances in X-ray Analysis, edited by B. L. Henke, J. B. Newkirk and S. R. Mallett (Plenum, New York, 1970) Vol. 13, P. 159.

    Google Scholar 

  35. G. Wiech, Zeit. für Physik 207, 428 (1967).

    Article  CAS  Google Scholar 

  36. T. H. Di Stefano and D. E. Eastman, Phys. Rev. Lett. 27, 1560 (1971).

    Article  Google Scholar 

  37. J. C. Phillips, Comments in Solid State Physics 4, 9 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Weaire, D., Thorpe, M.F. (1973). Electronic Structure of Amorphous Semiconductors. In: Herman, F., McLean, A.D., Nesbet, R.K. (eds) Computational Methods for Large Molecules and Localized States in Solids. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2013-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2013-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2015-9

  • Online ISBN: 978-1-4684-2013-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics