Skip to main content

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

The goal of any semi-empirical or approximate method is the achievement of a compromise between ease and accuracy. In molecular quantum chemistry ease generally means speed of obtaining results. Any method to be of practical use must execute at least as rapidly as methods which are more accurate. As obvious as this would seem, many suggested methods suffer from exactly this disadvantage. The criterion of accuracy is somewhat more difficult to define. Accurate with respect to what? If an approximate method confines itself closely to an exact theory, then the results should reproduce those obtainable from a correct treatment of that theory. If a method introduces pure parameters, then, perhaps, it is best guided to this purpose also. But if a method introduces semi-empirical parameters chosen from experiment, there exists the tempting idea that the model might extend beyond the confinements of the theory and best be compared directly with experiment. As attractive as a direct relation to experiment is, the idea is easy to abuse and has often led to a different method for different observables. Nevertheless, it is difficult to deny the utility of the Pariser-Parr-Pople (1) pi election model, and especially some of its refinements (2), in organizing thought about π→π* spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.G. Parr, Quantum Theory of Molecular Electronic Structure (Benjamin, New York, 1963 ).

    Google Scholar 

  2. I. Fischer-Hjalmars and M. Sundbom, Acta. Chem. Scand. 22, 607 (1968).

    Article  CAS  Google Scholar 

  3. K. Jug, Theoret. chim. Acta 14, 91 (1969).

    Article  CAS  Google Scholar 

  4. B.J. Nicholson, Adv. in Chem. Phys. 18, 249 (1971).

    Article  Google Scholar 

  5. F.P. Billingsley II and J.E. Bloor, J. Chem. Phys. 55, 5178 (1971).

    Article  CAS  Google Scholar 

  6. J.C. Slater and K.H. Johnson, Phys. Rev., B5, 844 (1972).

    Article  Google Scholar 

  7. S. Diner, J.P. Malrieu and P. Claverie, Theoret. chim. Acta, 13, 1, 13 (1968).

    Google Scholar 

  8. A. Streitwieser, Molecular Orbital Theory for Organic Chemists ( Wiley, New York, 1961 ).

    Google Scholar 

  9. L.L. Lohr and W.N. Lipscomb, J. Chem. Phys. 38, 1607 (1963).

    Article  CAS  Google Scholar 

  10. R. Hoffmann, J. Chem. Phys. 39, 1397; 40, 2047, 2474, 2480, 2745, (1964).

    Article  Google Scholar 

  11. R.B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry (Academic Press, 1969 ).

    Google Scholar 

  12. R. Rein, N. Fukuda, H. Win, G.E. Clarke and F. Harris, J. Chem. Phys. 45, 4743 (1966).

    Article  CAS  Google Scholar 

  13. Carrol, Armstrong and McGlynn, J. Chem. Phys. 44, 1865 (1966).

    Google Scholar 

  14. M. Zerner and M. Gouterman, Theoret. chim. Acta, 4, 44 (1966).

    Article  CAS  Google Scholar 

  15. J.A. Pople, D.P. Santry and G.A. Segal, J. Chem. Phys., 43, S129 (1965); J.A. Pople and G.A. Segal, ibid., S136 (1965); ibid., 44, 3289 (1966).

    Article  CAS  Google Scholar 

  16. J.A. Pople, D.L. Beveridge and P.A. Dobosh, J. Chem. Phys., 47, 2026 (1967).

    Article  CAS  Google Scholar 

  17. Janet Del Bene and H.H. Jaffe, J. Chem. Phys., 48, 1807, 4050 (1968); 49, 1221 (1968).

    Article  Google Scholar 

  18. M.J.S. Dewar and E. Haselbach, J. Am. Chem. Soc., 92, 590 (1970); (1970); N. Bodor, M.J.S. Dewar, A. Harget and E. Haselbach, J. Am. Chem. Soc., 92, 3854 (1970).

    Article  Google Scholar 

  19. D.B. Cook, P.C. Hollis and R. McWeeny, Mol. Phys., 13, 553 (1967).

    Article  CAS  Google Scholar 

  20. R.D. Brown, F.R. Burden and G.R. Williams, Theoret. chim. Acta, 18, 98 (1970).

    Article  CAS  Google Scholar 

  21. R. Manne, Theoret. chim. Acta., 6, 299 (1966); J. Chem. Phys., 46, 4645 (1967).

    Google Scholar 

  22. R.S. Mulliken, J. chim. Phys. 46, 497 (1949).

    CAS  Google Scholar 

  23. K. Ruedenberg, J. Chem. Phys. 19, 1433 (1951).

    Article  Google Scholar 

  24. M.D. Newton, N.S. Ostlund and J.A. Pople, J. Chem. Phys. 49, 5192 (1968); M.D. Newton, J. Chem. Phys. 51, 3917 (1969); M.D. Newton, W.A. Lathan, W.J. Hehre and J.A. Pople, J. Chem. Phys. 51, 3927 (1969).

    Article  CAS  Google Scholar 

  25. F.E. Harris and R. Rein, Theoret. chim. Acta, 6, 73 (1966).

    Article  CAS  Google Scholar 

  26. W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 51, 2657 (1969); W.J. Hehre, R. Ditchfield, R.F. Stewart and J.A. Pople, J. Chem. Phys. 52, 2769 (1970).

    Article  CAS  Google Scholar 

  27. R.F. Stewart, J. Chem. Phys. 52, 431 (1970).

    Article  CAS  Google Scholar 

  28. J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

    Article  CAS  Google Scholar 

  29. J. D. Weeks, A. Hazi and S.A. Rice, Adv. in Chem. Phys. 16, 283 (1969).

    Article  CAS  Google Scholar 

  30. M. Zerner, Mol. Phys. 00, 0000.

    Google Scholar 

  31. K. Seigbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Heden, K. Hamrin, U. Gelium, T. Bergmark, L.O. Werme, R. Manne and Y. Baer, ESCA Applied to Free Molecules (North-Holland, (1969).

    Google Scholar 

  32. C.E. Moore, Atomic Energy Levels, U.S. Dept. of Commerce, National Bureau of Standards Circ. No 467 (1949).

    Google Scholar 

  33. J.C. Slater, Phys. Rev. 36, 57 (1930).

    Article  CAS  Google Scholar 

  34. B.J. Ransil, Rev. Mod. Phys. 32, 245 (1960).

    Article  Google Scholar 

  35. G. Karlsson and M. Zerner, to be published.

    Google Scholar 

  36. M. Zerner, to be published.

    Google Scholar 

  37. P.E. Cade, K.D. Sales and A.C. Wahl, J. Chem. Phys. 44, 1973 (1966).

    Article  CAS  Google Scholar 

  38. G. Hertzberg, Spectra of Diatomic Molecules (D. Van. Nostrand Co., Inc., (1950).

    Google Scholar 

  39. W.M. Huo, J. Chem. Phys., 43, 624 (1965).

    Article  CAS  Google Scholar 

  40. C.A. Burrus, J. Chem. Phys., 28, 427 (1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Zerner, M.C. (1973). Approximate Methods in Quantum Chemistry. In: Herman, F., McLean, A.D., Nesbet, R.K. (eds) Computational Methods for Large Molecules and Localized States in Solids. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2013-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2013-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2015-9

  • Online ISBN: 978-1-4684-2013-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics