Skip to main content

AB Initio Computation of Molecular Structures Through Configuration Interaction

  • Conference paper
Computational Methods for Large Molecules and Localized States in Solids

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

From its very beginning with the calculation on the hydrogen molecule by Heitler and London,1 quantum chemistry has been faced with severe computational difficulties in the application of its theories and models. This is particularly true because it is concerned with interactions of atoms and molecules which by their very nature cannot be described concisely in a single coordinate system. Yet, these computational hurdles must be overcome if the subject is to advance to the level of providing tools for quantitative prediction, as well as evaluating approximations used in less rigorous applications in the vast range of chemical systems for which the quantum mechanical equations of motion must be severely approximated.

This research was supported, in part, by the Advanced Research Projects Agency of the U.S. Department of Defense and was monitored by U.S. Army Research Office-Durham, Box CM, Duke Station, Durham, North Carolina 27706, under Contract No. DAHC04-69C-0080.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Heitler and F. London, Z. Physik, 44, 455 (1927).

    Article  CAS  Google Scholar 

  2. H. James and A., Coolidge, J. Chem. Phys. 1, 825 (1933).

    CAS  Google Scholar 

  3. W. Kolos and L., Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

    CAS  Google Scholar 

  4. H. F. Schaefer III, “The Electronic Structure of Atoms and Molecules” Academic Press, New York 1972.

    Google Scholar 

  5. See, for example, “IBMOL-5 Program User’s Guide,” E. Clementi and J. Mehl, IBM Research Report RJ 889, 1971 (unpublished) and “BISON, Part I, User’s Manual and General Program Description,” A. C. Wahl, P. J. Bertoncini, K. Kaiser, and R. M. Land, Argonne National Laboratory Research Report ANL-7271, 1968 (unpublished).

    Google Scholar 

  6. P. O. Lowdin, “Advances in Chemical Physics,” Vol II, Interscience Publishers, Inc. New York, 1959.

    Google Scholar 

  7. J. C. Slater, “Quantum Theory of Molecules and Solids,” Vol. I and II, McGraw-Hill, New York (1963).

    Google Scholar 

  8. C. F. Bunge, Theoret. Chim. Acta, 16, 126 (1970).

    Article  CAS  Google Scholar 

  9. C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).

    Article  CAS  Google Scholar 

  10. Compendia of optimized sets of Slater type elementary functions for atoms and small molecules may be found in:

    Google Scholar 

  11. P. S. Bagus, T. L. Gilbert, and C. C. J. Roothaan, J. Chem. Phys. 56, 5195 (1972);

    Article  CAS  Google Scholar 

  12. E. Clementi, “Tables of Atomic Wave Functions,” a supplement to IBM J. Res. Develop. 9, 2 (1965);

    Article  CAS  Google Scholar 

  13. A. D. McLean and M. Yoshimine, “Table of Linear Molecule Wave Functions,” a supplement to IBM J. Res. Develop. 12, 206 (1968).

    Article  CAS  Google Scholar 

  14. A classic case study of optimization of elementary functions for a small molecule is given by P. E. Cade, K. D. Sales, and A. C. Wahl, J. Chem. Phys. 44, 1973 (1966).

    Article  CAS  Google Scholar 

  15. A. D. McLean and M. Yoshimine, unpublished work.

    Google Scholar 

  16. C. C. J. Roothaan and P. S. Bagus, “Methods in Computational Physics,” Vol II, Academic Press, New York (1963).

    Google Scholar 

  17. S. Huzinaga, “Approximate Atomic Functions,” Volumes I and II, Research Report of the Dept. of Chemistry of the University of Alberta, 1971 (unpublished).

    Google Scholar 

  18. See for example, J. C. Slater, “Quantum Theory of Atomic Structure,” Vols. I and II, McGraw-Hill, New York (1960); U. Fano, Phys. Rev. 140, A67 (1965); R. K. Nesbet, J. Math. Phys. 2, 701 (1961); F. Sasaki, Int. J. Quant. Chem. (in press).

    Google Scholar 

  19. A. D. McLean and B. Liu, submitted for publication.

    Google Scholar 

  20. E. R. Davidson, “Advances in Quantum Chemistry,” Vol. 6, Academic Press, New York (1972).

    Google Scholar 

  21. We recall that both γ’ and γ are obtained from variationally determined functions.

    Google Scholar 

  22. C. F. Bunge, Phys. Rev. (in press).

    Google Scholar 

  23. G. Das and A. C. Wahl, J. Chem. Phys. 56, 1769 (1972).

    Article  CAS  Google Scholar 

  24. The iterative natural orbital method was introduced and used in a somewhat different situation by E. R. Davidson and C. F. Bender, J. Phys. Chem. 70, 2675 (1966); an example of the use of the method as we have discussed it is given by H. F. Schaefer, J. Chem. Phys. 54, 2207 (1971).

    Article  Google Scholar 

  25. B. Liu, Phys. Rev. Letters 27, 1251 (1971).

    Article  CAS  Google Scholar 

  26. Unpublished work of the authors on several systems including CH, LiO, KrF, and KrF2.

    Google Scholar 

  27. F. Sasaki and M. Yoshimine, unpublished results.

    Google Scholar 

  28. C. Edmiston and M. Krauss, J. Chem. Phys. 45, 1833 (1966).

    Article  CAS  Google Scholar 

  29. A. W. Weiss, Phys. Rev. 162, 71 (1967).

    Article  CAS  Google Scholar 

  30. Z. Gershgorn and I. Shavitt, Intern. J. Quantum Chemistry 1S, 403 (1967).

    Article  Google Scholar 

  31. S. Green, J. Chem. Phys. 54, 827 (1971).

    Article  CAS  Google Scholar 

  32. R. K. Nesbet, “Advances in Chemical Physics,” Volume 14, page I, Interscience Publishers (1969).

    Book  Google Scholar 

  33. M. Yoshimine, J. Computational Phys. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Bagus, P.S., Liu, B., McLean, A.D., Yoshimine, M. (1973). AB Initio Computation of Molecular Structures Through Configuration Interaction. In: Herman, F., McLean, A.D., Nesbet, R.K. (eds) Computational Methods for Large Molecules and Localized States in Solids. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2013-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2013-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2015-9

  • Online ISBN: 978-1-4684-2013-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics