Computer Simulation of Vapor Deposition on Two-Dimensional Lattices

  • George M. White


Abraham and White(1,16) have written computer programs that allow a user to run “computer experiments” for vapor deposition studies that include first and second nearest neighbor interactions. These Vapor Deposition Simulation programs (VDS for short) use Monte Carlo methods to determine the molecular dynamics of condensation, evaporation, and migration on lattices. Results are expressed in terms of adsorption isotherms and lattice coverages as a function of time.


Random Number Adsorption Isotherm Vapor Deposition Neighbor Interaction Vapor Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. F. Abraham and G. M. White, Computer simulation of vapor deposition on two-dimensional lattices, IBM Palo Alto Scientific Center Report No. 320–3252 (1969).Google Scholar
  2. 2.
    E. A. Flood, ed., The Solid Gas Interface, Marcel Dekker, Inc., New York, 1967, Vol. 1.Google Scholar
  3. 3.
    J. M. Honig, Adsorption theory from the viewpoint of order-disorder theory, p. 371 of Reference 2 above.Google Scholar
  4. 4.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation, Pergamon Press, London, 1963.Google Scholar
  5. 5.
    J. Hijmans and J. deBoer, An approximation method for order-disorder problems I, Physica 21, 471–484 (1955).CrossRefGoogle Scholar
  6. 6.
    T. L. Hill, Statistical Thermodynamics, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960, p. 80.Google Scholar
  7. 7.
    R. H. Fowler, A statistical derivation of Langmuir’s adsorption isotherm, Proc. Cambridge Phil Soc. 31, 260–264 (1935).CrossRefGoogle Scholar
  8. 8.
    J. M. Hammersly and D. C. Handscomb, Monte Carlo Methods, Methuen and Co., Ltd., London, 1964.CrossRefGoogle Scholar
  9. 9.
    R. Gordon, Adsorption isotherms of lattice gases by computer simulation, J. Chem. Phys. 48, 1408–1409 (1968). Gordon gives earlier references that describe some previous work on computer simulation of irreversible vapor deposition.CrossRefGoogle Scholar
  10. 10.
    R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, New York, 1939.Google Scholar
  11. 11.
    G. Marsaglia and M. D. MacLaren, Uniform random number generators, J.A.C.M. 12, 83–89, 1965.Google Scholar
  12. 12.
    A. J. W. Moore, Nucleation of solids from the vapor phase, J. Austr. Inst. Metals, 11, 220–226 (1966).Google Scholar
  13. 13.
    G. H. Gilmer and P. Bennema, J. Appl. Phys. 43, 1347 (1972).CrossRefGoogle Scholar
  14. 14.
    F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Co., 1965, p. 64.Google Scholar
  15. 15.
    W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley and Sons, Inc., New York, 1957.Google Scholar
  16. 16.
    F. F. Abraham and F. G. White, Computer simulation of vapor deposition on two-dimensional lattices, J. Appl. Phys. 41, 1841 (1970).CrossRefGoogle Scholar
  17. 17.
    G. M. White and F. F. Abraham. Simulation time versus real time in computer simulation of vapor deposition, J. Appl. Phys. 41, 5348–5350 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • George M. White
    • 1
  1. 1.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations