Skip to main content

Approximate KKR Band-Structure Schemes for Transition Metals

  • Chapter
Computational Methods in Band Theory

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

In recent years there has been much progress in the solution of the energy band problem i.e., the determination of the eigenvalues and eigenvectors of the Schroedinger equation for a given periodic potential. The two principal reasons for this are (i) the progress made in computer technology giving rise to bigger (i.e. larger core size) and faster computers required for the numerical solution of the Schroedinger equation, and (ii) improved methods for solving the latter equation. The main purpose of this paper is to review and critically compare some of the methods which have been developed during the past year or two for solving the energy band problem for transition metals. It will become apparent from the theory that simple metals (i.e., non-transition metals), and in particular pseudopotential theory (Harrison (1966)), can be treated as an approximation to the theory developed in section 3 of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano S. and Yamashita J. (1967), “Band Theory of Antiferromagnetic Chromium,” J. Phys. Soc. Japan, 23, pp. 714–736.

    Article  Google Scholar 

  • Austin B. J., Heine V., and Sham L. J. (1962), “General Theory of Pseudopotentials,” Phys. Rev., 127, pp. 276–282.

    Article  Google Scholar 

  • Burdick G. A. ( 1963, “Energy Band-structure of Copper,” Phys. Rev., 129, pp. 138–149.

    Article  Google Scholar 

  • Carslaw H. S. and Jaeger J. C. (1959), “The Conduction of Heat in Solids,” (Clarendon Press).

    Google Scholar 

  • Cooper B. R., Kreiger E. L., and Segall B. (1970), “Phase-shift Parameterisation: Band Structure for Ag.,” (published in this volume). 257

    Google Scholar 

  • Dalton N. W. (1968), “Adaptation of the Kapur-Peierls Theory of Resonances to Relativistic Band-structures,” Physics Letters, 28A, pp. 280–281.

    Article  Google Scholar 

  • Dalton N. W. (1970), “Approximate Calculation of Electronic Band-structures. IV Density-of-states for Transition Metals,” J. Phys.C (Solid State Phys.) (to be published).

    Google Scholar 

  • Dalton N. W. and Hubbard J. (1968) “Remarks on the Approximate Calculation of Electronic Band-structures” A.E.R.E Rep. No. TP/237.

    Google Scholar 

  • Harrison W. A. (1966) “Pseudopotentials in the Theory of Metals” (Benjamin, New York).

    Google Scholar 

  • Heine V. (1967) “s-d Interaction in Transition Metals” Phys. Rev. 153, pp. 673–682.

    Article  Google Scholar 

  • Heine V. (1969) “Electronic Structure of Metals” (Ch. 1 “The Physics of Metals” Ed. Ziman — Camb. Univ. Press).

    Google Scholar 

  • Herman F. and Skillman S. (1963) “Atomic Structure Calculations” (Prentice-Hall Inc.).

    Google Scholar 

  • Hodges L., Ehrenreich H. and Lang N. D. (1966) “Interpolation Scheme for Band-structure of Noble and Transition Metals: Ferromagnetism and Neutron Diffraction in Ni” Phys. Rev. 152, pp. 505–526.

    Article  Google Scholar 

  • Hubbard J. (1967) “The Approximate Calculation of Electronic Band-structures” Proc. Phys. Soc. 92, pp. 921–937.

    Article  Google Scholar 

  • Hubbard J. and Dalton N. W. (1969) “The Approximate Calculation of Electronic Band-structures II. Application to Copper and Iron” J. Phys. C. (Solid State Phys.) [2], pp. 1637–1649.

    Google Scholar 

  • Hubbard J. (1969) “The Approximate Calculation of Electronic Band-Structures III” J. Phys. C. (Solid State Phys.) [2], pp. 1222–1229.

    Google Scholar 

  • Hum D. and Wong K. C. (1969) “Calculation of Transition Metal Band-straetures” J. Phys. C. (Solid State Phys.) [2], 2, pp. 833–840.

    Article  Google Scholar 

  • Jacobs R. L. (1968) “The Theory of Transition Metal Band-structures” J. Phys. C. (Proc. Phys. Soc.) [2], 1, pp. 492–506.

    Google Scholar 

  • Johnson K. H. “Relationship Between the Augmented-Plane-Wave and Korringa-Kohn-Rostoker Methods in Band Theory” Phys. Rev. 150, pp. 429–440.

    Google Scholar 

  • Kapur P. L. and Peierlö R. E. (1938) “The Dispersion Formula for Nuclear Reactions” Proc. Roy. Soc. A, 166, pp. 277–295.

    Article  Google Scholar 

  • Kohn W. and Rostoker N. (1954) “Solution of the Schrodinger Equation in Periodic Lattices with an Application to Metallic Lithium” Phys. Rev. 94, pp. 1111–1120.

    Article  Google Scholar 

  • Korringa J. (1947) “On the Calculation of a Bloch Wave in a Metal” Physica 13, pp. 392–404.

    Article  Google Scholar 

  • Löwdin P. (1951) “A note on the Quantum-Mechanical Perturbation Theory” Journal Chem. Phys. 19, pp. 1396–1401.

    Article  Google Scholar 

  • Mueller F. M. (1967) “Combined Interpolation Scheme for Transition and Noble Metals” Phys. Rev. 153, pp. 659–669.

    Article  Google Scholar 

  • Newton R. G. (1966) “Scattering Theory of Waves and Particles” (McGraw-Hill).

    Google Scholar 

  • Pettifor D. G. (1969) “An Energy-independent Method of Band-Structure Calculation for Transition Metals” J. Phys. C. (Solid State Phys.) [2], 2, pp. 1051–1069.

    Article  Google Scholar 

  • Schiff L. I. (1955) “Quantum Mechanics” (McGraw-Hill).

    Google Scholar 

  • Slater J. C. (1937) “Wave Functions in a Periodic Potential” Phys. Rev. 51, pp. 846–851.

    Article  Google Scholar 

  • Slater J. C. (1966) “Green’s-Function Method in the Energy-Band Problem” Phys. Review 145, pp. 599–602.

    Article  Google Scholar 

  • Slater J. C. and Koster G. F. (1954) “Simplified LCAO Method for the Periodic Potential Problem” Phys. Rev. 94, pp. 1498–1524.

    Article  Google Scholar 

  • Wakoh S. (1970) “Generalization of Hubbardfs Model Hamiltonian Method: Application to h.c.p. cobalt” J. Phys. C. ( Solid State Phys.) (to be published).

    Google Scholar 

  • Wong K. C. (1970) “Calculation of Transition Metal Band-structures. II” J. Phys. C. (Solid State Phys.) [3], 2, pp. 378–386.

    Article  Google Scholar 

  • Wood J. H. (1962) “Energy Bands in Iron via the Augmented-Plane-Wave Method” Phys. Rev. 126, pp. 517–527.

    Article  Google Scholar 

  • Ziman J. M. (1965) “The T-matrix, the K-matrix, d-bands and l-dependent Pseudo Potentials in the Theory of Metals” Proc. Phys. Soc. 86, pp. 337–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Dalton, N.W. (1971). Approximate KKR Band-Structure Schemes for Transition Metals. In: Marcus, P.M., Janak, J.F., Williams, A.R. (eds) Computational Methods in Band Theory. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1890-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1890-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1892-7

  • Online ISBN: 978-1-4684-1890-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics