Advertisement

Testing Methods and Techniques

  • D. A. Wigley
Part of the The International Cryogenics Monograph Series book series (INCMS)

Abstract

Although it is not possible to give a detailed account of the variety of equipment used to test the mechanical properties of materials at low temperatures, a brief description is given here of some of the main types of apparatus that have been employed in obtaining the results discussed in the earlier chapters. As noted in section 1.1, the uniaxial tensile test is the technique most widely used for obtaining both fundamental and design data and a large number of different tensile cryostats have been employed for this purpose.1 Apart from the natural preference of most experimentalists to design their own equipment, there is a more fundamental reason for the development of such a variety of cryostat systems. It is, in most cases, desirable to have a machine which is as “stiff” as possible in order to observe the sharp yield and serrated stress-strain curve phenomena which were discussed in section 2.4. To achieve such stiffness, relatively massive pull-rods are needed to transmit the applied stresses, but this requirement contradicts the other basic necessity of any piece of cryogenic equipment, namely the need to minimize the heat leak into the cryogenic fluid. Thus, each design represents a compromise between these factors in addition to the usual optimization of the conflicts between initial costs and running costs, simplicity and versatility, etc.

Keywords

Liquid Helium Crack Opening Displacement Flexural Test Knife Edge Sheet Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York.Google Scholar
  2. 2.
    R. J. Arsenault, “Low Temperature Deformation Techniques,” in H. Herman (Ed.), Advances in Materials Research, Vol. 1 (1967), p. 215.Google Scholar
  3. 3.
    H. M. Rosenberg, Met. Revs. 3, (12); 357 (1958);Google Scholar
  4. 3a.
    H. M. Rosenberg “The Measurement of Mechanical Properties,” in F. E. Hoar, L. C. Jackson, and N. Kurti (Eds.), Experimental Cryophysics, Butterworths (1961).Google Scholar
  5. 4.
    F. R. Schwartzberg, in Ref. 1, Vol. 8 (1963), p. 608, and in the Preface to the Cryogenic Materials Data Handbook, ML-TDR-64–280(1964), and later supplements.Google Scholar
  6. 5.
    O. V. Klajvin, Industrial Lab. 29, 473 (1963).Google Scholar
  7. 6.
    M. P. Hanson, G. W. Stickley, and H. T. Richards, Am. Soc. Testing Mat., Special Tech. Pub. No. 287 (1960), p. 3.Google Scholar
  8. 7.
    Yu. E. Andrianov, D. V. Lebedev, and B. M. Ovsyannikov, Industrial Lab. 32, 1077 (1966).Google Scholar
  9. 8.
    J. F. Watson and J. L. Christian, Mat. Res. Standards 1, 87 (1961).Google Scholar
  10. 9.
    J. E. Cambell and L. P. Rice, Am. Soc. Testing Mat., STP 287, (1960), p. 158.Google Scholar
  11. 10.
    R. M. McClintock and K. A. Warren, Mat. Res. Standards 1 (2), 95 (1961).Google Scholar
  12. 11.
    D. Hull and H. M. Rosenberg, Phil. Mag. 4, 303 (1959).CrossRefGoogle Scholar
  13. 12.
    Z. S. Basinski, in G. K. White (Ed.), Experimental Techniques in Low-Temperature Physics, Oxford Univ. Press (1968), p. 164.Google Scholar
  14. 13.
    E. T. Wessel, Bull. ASTM 1956 (January), 40.Google Scholar
  15. 14.
    G. U. Behrsing and L. R. Lucas, Rev. Sci. Instr. 36 (5), 617 (1965).CrossRefGoogle Scholar
  16. 15.
    I. E. Gindin, Ya. D. Starodubov, and G. G. Chechel’nitskii, Industrial Lab. (USSR) 32 (7), 1079 (1966).Google Scholar
  17. 16.
    R. D. Keys, in Ref. 1, Vol. 7 (1962), p. 455.Google Scholar
  18. 17.
    J. F. Watson et al., “A Study of the Effects of Nuclear Radiation on High Strength Aerospace Vehicle Materials at the Boiling Point of Hydrogen (-423°F),” ERR-EN-085, General Dynamics/Astronautics (September 1961).Google Scholar
  19. 18.
    W. Weleff, W. F. Emmons, and H. S. McQueen, in Ref. 1, Vol. 10 (1965), p. 50.Google Scholar
  20. 19.
    D. W. Chamberlain, “A Cryostat, Accessories, and System for Mechanical Properties Testing at Temperatures down to 4°K,” Application Series SA-4, Instron Corp., 2500 Washington Street, Canton, Mass.Google Scholar
  21. 20.
    G. Taylor, Metallurgy Dept., Oxford University, private communication.Google Scholar
  22. 21.
    R. L. McGee, J. E. Cambell, R. L. Carlson, and G. K. Manning, “The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures,” WADC TR-58–386 (November 1960).Google Scholar
  23. 22.
    D. Hull and H. M. Rosenberg, Cryogenics 1, 27 (1960).CrossRefGoogle Scholar
  24. 23.
    R. P. Mikesell and R. M. McClintock, Ref. 1, Vol. 7 (1962), p. 509.Google Scholar
  25. 24.
    R. P. Reed, in Ref. 1, Vol. 7 (1962), p. 448.Google Scholar
  26. 25.
    R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A242, 203 (1957).Google Scholar
  27. 26.
    R. J. Favor, D. N. Gideon, H. J. Grover, J. E. Heyes, and G. M. McClure, “Investigation of Fatigue Behavior of Certain Alloys in the Temperature Range from Room Temperature to -423°F,” WADD TR-61–132 (June 1961).Google Scholar
  28. 27.
    R. D. Keys and F. R. Schwartzberg, Mat. Res. Standards 4, 222 (1964).Google Scholar
  29. 28.
    A. J. Nachtigall, S. J. Klima, and J. C. Freche, J. Mat. JMLSA, 3 (2), 425 (June 1968); and NASA Tech. Note D-4274 (December 1967).Google Scholar
  30. 29.
    D. W. Chamberlain in Ref. 1, Vol. 9 (1964), p. 131.Google Scholar
  31. 30.
    J. L. Christian, “Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment,” ASD-TDR-62–258 (March 1962).Google Scholar
  32. 31.
    T. S. De Sisto, “Automatic Impact Testing to 8°K, WAL-TR-112/93, Watertown Arsenal Laboratory (July 1958).Google Scholar
  33. 32.
    T. F. Kiefer, R. D. Keys, and F. R. Schwartzberg, in Ref. 1, Vol. 10 (1965), p. 56.Google Scholar
  34. 33.
    D. T. Eash, in Ref. 1, Vol. 11 (1966), p. 401.Google Scholar
  35. 34.
    R. P. Reed and V. D. Arp, Cryogenics 9, 362 (1969).CrossRefGoogle Scholar
  36. 35.
    P. T. Chiarito in Ref. 1, Vol. 7 (1962), p. 433.Google Scholar
  37. 36.
    R. M. McClintock, Rev. Sci. Instr. 30 (8), 715 (1959).CrossRefGoogle Scholar
  38. 37.
    K. A. Warren and R. P. Reed, N. B. S. Monograph 63 (1963).Google Scholar
  39. 38.
    G. V. Aseff, R. F. Callaway, and A. M. Liebschutz, in Ref. 1, Vol. 8 (1963), p. 624.Google Scholar
  40. 39.
    J. M. Roberts and N. Brown, Trans. AIME 218, 454 (1960);Google Scholar
  41. 39a.
    J. M. Roberts and N. Brown, Acta Met. 10, 1101 (1962).CrossRefGoogle Scholar
  42. 40.
    R. P. Reed and R. L. Durcholz, in Ref. 1 Vol. 15 (1970), Paper J3.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. A. Wigley
    • 1
  1. 1.Engineering LaboratoriesThe University of SouthamptonSouthamptonEngland

Personalised recommendations