Advertisement

Abstract

The elastic and plastic deformation of materials subjected to an applied stress is terminated by an inhomogeneous form of deformation termed fracture. Just as the macroscopic characteristics of elastic and plastic deformation in crystalline materials are determined by the basic atomic and microscopic processes such as slip, so the large-scale characteristics of fracture can be shown to be a result of the basic micromechanisms which cause atomic bonds to be broken and new crack surfaces to be created. There are a variety of modes of fracture, ranging from the completely brittle failure of perfectly elastic materials to the fully shear failure of amorphous materials such as clay. However, in most materials, particularly metals, fracture is neither fully brittle nor completely ductile and the actual modes of failure are determined by a number of factors, which include the crystal structure of the material, its purity, and its thermal and mechanical history, and by the environmental and other conditions under which it is loaded. In the first section of this chapter, the basic mechanisms responsible for ductile and brittle failure in metals are examined both with respect to their role in the initiation of microcracks or voids and in the initial stages of crack growth.

Keywords

Fracture Toughness Fatigue Life Hydrogen Embrittlement Cleavage Fracture Crack Opening Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Reference Works

  1. 1.
    A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials, John Wiley and Sons, New York (1967).Google Scholar
  2. 2.
    B. L. Averbach et al. (Eds.), Conference on Fracture, M.I.T. Press and John Wiley and Sons, New York (1959).Google Scholar
  3. 3.
    D. C. Drucker and J. J. Gilman (Eds.), Conference on Fracture of Solids, Interscience, New York (1963).Google Scholar
  4. 4.
    J. R. Low, Jr., “Fracture of Metals,” Progress in Materials Science, Vol. 12 Perga-mon Press, Oxford (1963).Google Scholar
  5. 5.
    “Fracture Toughness Testing,” ASTM STP 381, Am. Soc. Testing. Mat., Philadelphia (1965).Google Scholar
  6. 6.
    K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York.Google Scholar
  7. 7.
    “Proc. Int. Conf. on Fracture,” Sendai, Japan (1965).Google Scholar
  8. 8.
    “Fracture of Engineering Materials,” Am. Soc. Metals, Cleveland (1964).Google Scholar
  9. 9.
    “Fracture 1969,” Proc. Second Int. Conf. on Fracture, Brighton, April 1969, Chapman and Hall (1969).Google Scholar
  10. 10.
    W.F. Brown, Jr., and J.E. Srawley, “Plane Strain Crack Toughness Testing of High Strength Metallic Materials,” ASTM STP 410, Am. Soc. Testing Mat., Philadelphia (1966).Google Scholar

Other References

  1. 11.
    G. Y. Chin, W. F. Hosford, Jr., and W. A. Backofen, Trans. Met. Soc. AIME 230, 437 (1964).Google Scholar
  2. 12.
    E. R. Parker, H. R. Davis, and A. E. Flanigan, Proc. ASTM 46, 1159 (1946).Google Scholar
  3. 13.
    K. Puttick, Phil. Mag. 4, 964 (1959).CrossRefGoogle Scholar
  4. 14.
    K. Puttick, Phil. Mag. 5, 759 (1960).CrossRefGoogle Scholar
  5. 15.
    B. I. Edelson and W. M. Baldwin, Trans. ASM 55, 230 (1962).Google Scholar
  6. 16.
    J. R. Low, in “Relation of Properties to Microstructure,” Am. Soc. Metals, Cleveland (1953), p. 163.Google Scholar
  7. 17.
    C. Zener, Trans. ASM A40, 3 (1948).Google Scholar
  8. 18.
    A. H. Cottrell, Trans. AIME 212, 192 (1958).Google Scholar
  9. 19.
    R. Honda, Acta Met. 9, 969 (1961).CrossRefGoogle Scholar
  10. 20.
    J. J. Gilman, Trans. AIME 200, 621 (1954).Google Scholar
  11. 21.
    A. N. Stroh, Phil. Mag. 3, 597 (1958).CrossRefGoogle Scholar
  12. 22.
    D. Hull, Acta Met. 8, 11 (1960).CrossRefGoogle Scholar
  13. 23.
    W. D. Biggs and P. L. Pratt, Acta Met. 6, 694 (1958).CrossRefGoogle Scholar
  14. 24.
    C. N. Reid, J. Less Common Metals 9, 105 (1965).CrossRefGoogle Scholar
  15. 25.
    A. N. Stroh, Adv. Phys. 6, 418 (1957).CrossRefGoogle Scholar
  16. 26.
    N. J. Petch, in B. L. Averbach et al. (Eds.), Conference on Fracture, M.I.T. Press and John Wiley and Sons, New York (1959)., p. 54.Google Scholar
  17. 27.
    J. Friedel, in B. L. Averbach et al. (Eds.), Conference on Fracture, M.I.T. Press and John Wiley and Sons, New York (1959)., p. 498.Google Scholar
  18. 28.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221, 163 (1920).Google Scholar
  19. 29.
    C. E. Inglis, Trans. Inst. Naval. Arch. 55, 219 (1913).Google Scholar
  20. 30.
    E. Orowan, Trans. Inst. Engrs. Shipbuild., Scotland 1945, 165; Rept. Prog. Phys. 12 (1948–49).Google Scholar
  21. 31.
    G. R. Irwin, in “Encyclopedia of Physics,” Vol. VI, Springer-Verlag Heidelberg (1958), p. 551.Google Scholar
  22. 32.
    G. R. Irwin, “Plastic Zone near a Crack and Fracture Toughness,” in “Proc. 7th Sagamore Ordnance Mat. & Res. Conf.” (August 1960).Google Scholar
  23. 33.
    “Fracture Testing of High Strength Sheet Materials,” 1st Rept. of Special ASTM committee, ASTM Bull. No. 243 (January 1960), pp. 29–40 and ASTM Bull. 244 (February 1960), pp. 18–28.Google Scholar
  24. 34.
    J.E. Srawley and W.F. Brown, in “Fracture Toughness Testing,” ASTM STP 381, Am. Soc. Testing. Mat., Philadelphia (1965)., pp. 133–198; also, in “Fracture Toughness Testing,” NASA Rept. TND-2599 (January 1965).CrossRefGoogle Scholar
  25. 35.
    J. E. Srawley and W. F. Brown, NASA Tech. Man. X-52030 (1964).Google Scholar
  26. 36.
    J. M. Krafft, A. M. Sullivan, and R. W. Boyle, “Effect of Dimensions on Fast Fracture Instability in Notched Steels,” in “Proc. Crack Propagation Symposium,” Cranfield, (1961), pp. 8–28.Google Scholar
  27. 37.
    P. Kenny and J. D. Cambell, in Progress in Materials Science, Vol. 13, Pergamon Press, Oxford (1968), p. 135.Google Scholar
  28. 38.
    F. R. Schwartzberg, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York., Vol. 12 (1967), p. 458.Google Scholar
  29. 39.
    A. W. Brisbane, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York., Vol. 8 (1963), p. 641.Google Scholar
  30. 40.
    J. L. Christian, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York., Vol. 10 (1965), p. 86.Google Scholar
  31. 41.
    F. A. McClintock, Weld. J. Res. Suppl. 26, 202s (1961).Google Scholar
  32. 42.
    J. F. Watson, J. L. Christian, T. T. Tanalski, and A. Hurlich. in “Proc. ASTM Meeting,” Atlantic City, New Jersey (June 1961).Google Scholar
  33. 43.
    J. G. Kaufman and E. W. Johnson, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York., Vol. 8 (1963), p. 678.Google Scholar
  34. 44.
    R. M. McClintock and R. L. Hauser, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York., Vol. 8 (1963), p. 631.Google Scholar
  35. 45.
    C. F. Tiffany and J. N. Masters, in “Fracture Toughness Testing,” ASTM STP 381, Am. Soc. Testing. Mat., Philadelphia (1965), p. 249.CrossRefGoogle Scholar
  36. 46.
    E. T. Wessel, “Some Basic and Engineering Considerations Regarding the Fracture of Metals at Cryogenic Temperatures” in “Behavior of Metals at Cryogenic Temperatures,” ASTM STP 387, Am. Soc. Testing Mat., Philadelphia (1966), p. 32.Google Scholar
  37. 47.
    G. R. Irwin and A. A. Wells, Metallurgical Review, 10, 223, (1965).Google Scholar
  38. 48.
    J. L. Christian. General Dynamics/Astronautics Rept. ASD-TDR-62–258, part II, New York, April 1963, quoted in ref. 38.Google Scholar
  39. 49.
    T. R. Wilshaw and P. L. Pratt in “Proc. Int. Conf. on Fracture,” Sendai, Japan (1965), B III, p. 3.Google Scholar
  40. 50.
    N. P. Allen, W. P. Rees, B. E. Hopkins, and H. R. Tipler, J. Iron Steel Inst. 174, 108 (1953).Google Scholar
  41. 51.
    W. Pellini and P. Puzak, N.R.L. Report 5920 (March 1963).Google Scholar
  42. 52.
    T. S. Robertson, “Propagation of Brittle Fracture in Steel,” J. Iron Steel Inst. 175, 361 (1953).Google Scholar
  43. 53.
    P. Puzak, M. E. Schuster, and W. S. Pellini, Weld. J. 1954 (October), 481s-495s; also ASTM Standards E. 208 (1966), Part 30, pp. 606–624.Google Scholar
  44. 54.
    R. W. Nichols, “Prevention of Catastrophic Failure in Steel Pressure Circuit Components,” Nuclear Eng. 11 (120), 369–373 (1966).Google Scholar
  45. 55.
    C. C. Woodley, F. M. Burdekin, and A. A. Wells, “Mild Steel for Pressure Equipment at Subzero Temperatures,” Brit. Weld. J. 11 (3), 123–136 (1964).Google Scholar
  46. 56.
    F. M. Burdekin, Weld. J. Res. Suppl. 1968 (March), 129s–139s.Google Scholar
  47. 57.
    F. M. Burdekin, and A. A. Wells, “Fracture Toughness Testing,” ASTM STP 381, Am. Soc. Testing. Mat., Philadelphia (1965), pp. 399–405.Google Scholar
  48. 58.
    W. A. Derungs, “Criteria for the Selection of Steels for Low Temperature Service,” Rept. of Working Party II, IVth Congress, European Coal and Steel Community (1968).Google Scholar
  49. 59.
    P. P. Puzak, E. W. Eschbacher, and W. S. Pellini, Weld. J. Res. Suppl. 31, 561s (1952).Google Scholar
  50. 60.
    R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A242, 203 (1957).Google Scholar
  51. 61.
    A. J. Nachtigall, S. J. Klima, and J. C. Freche, J. Materials, JMLSA, 3 (2) 425–443 (June 1968).Google Scholar
  52. 62.
    F. R. Schwartzberg, T. F. Kiefer, and R. D. Keys, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 10 (1965), p. 1.Google Scholar
  53. 63.
    R. C. Boellner, C. Laird, and A. J. McEvily, Trans. AIME 233, 379 (1965).Google Scholar
  54. 64.
    T. R. G. Williams and M. Bily, Rheolog. Acta 9 (1), 120–124 (1970).CrossRefGoogle Scholar
  55. 65.
    H. C. Rogers, Science 159, 1057–1064 (8 March 1968).CrossRefGoogle Scholar
  56. 66.
    W. A. Wickstrom and B. R. Etheridge, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 13 (1968), p. 334.Google Scholar
  57. 67.
    “Progress in Measuring Fracture Toughness and Using Fracture Mechanics,” 5th Rept. of ASTM Special Committee, Mat. Res. Standards 4, 107–109 (1964).Google Scholar
  58. 68.
    International Nickel Company Data Sheets on Nickel Steels for Low-Temperature Applications.Google Scholar
  59. 69.
    K. W. Burns and F. B. Pickering, J. Iron Steel Inst. 202, 899 (1964).Google Scholar
  60. 70.
    V. Weiss and S. Yukawa, in “Fracture Toughness Testing,” ASTM STP 381, Am. Soc. Testing. Mat., Philadelphia (1965), pp. 1–22.CrossRefGoogle Scholar
  61. 71.
    “Progress in Measuring Fracture Toughness and Using Fracture Mechanics,” Mat. Res. Standards 4, 107–119 (1964).Google Scholar
  62. 72.
    G. M. Boyd, Brittle Fracture in Steel Structures, Butterworths, London (1970).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. A. Wigley
    • 1
  1. 1.Engineering LaboratoriesThe University of SouthamptonSouthamptonEngland

Personalised recommendations