Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

  • 203 Accesses

Abstract

Metals can be strengthened by work-hardening because the large numbers of sessile dislocations created during plastic deformation make it increasingly more difficult for mobile dislocations to move through the lattice. There is, however, a limit to the amount of strengthening which can be achieved by work-hardening and, as solute atoms also produce very efficient obstacles to dislocation motion, solution-hardening is usually a more effective method of increasing a metal’s resistance to plastic deformation. In some alloy systems, solute atoms also extend the temperature range over which a certain crystal structure is stable, a particularly relevant example being the stabilization by nickel of the high-temperature fcc (γ) phase of iron to produce austenitic stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Reference Work

  1. D. McLean, Mechanical Properties of Metals, John Wiley and Sons, New York (1962).

    Google Scholar 

  2. R. P. Reed and R. P. Mikesell, “Low-Temperature Mechanical Properties of Copper and Selected Alloys,” N.B.S. Monograph 101 (1967).

    Google Scholar 

  3. K. A. Warren and R. P. Reed, “Tensile and Impact Properties of Selected Materials from 20°K to 300°K”, N.B.S. Monograph 63 (1963).

    Google Scholar 

  4. F. R. Schwartzberg, S. H. Osgood, R. D. Keys, and T. I. Keifer, “Cryogenic Materials Data Handbook,” ML-TDR-280 (August 1964) and supplement (March 1966).

    Google Scholar 

  5. K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York.

    Google Scholar 

  6. R. W. K. Honeycombe, The Plastic Deformation of Metals, Arnold, London (1968).

    Google Scholar 

  7. American Society for Metals Handbook, 8th ed., Am. Soc. Metals, Cleveland, Ohio (1961).

    Google Scholar 

  8. R. M. McClintock and H. P. Gibbons, “Mechanical Properties of Structural Materials at Low Temperatures,” N.B.S. Monograph 13 (1960).

    Google Scholar 

Other References

  1. T. E. Mitchell, “Dislocations and Plasticity in Single Crystals of Face-Centered Cubic Metals and Alloys”, in E. G. Stanford et al. (Eds.)., Progress in Applied Materials Research, Vol. 6, Heywood and Co., London (1964), p. 119.

    Google Scholar 

  2. D. F. Stein and J. R. Low, Acta. Met. 14, 1183 (1966).

    Article  Google Scholar 

  3. F. Pfaff, Z. Metallic. 53, 411, 466 (1962).

    Google Scholar 

  4. R. P. Reed and R. P. Mikesell, J. Materials 2, 370 (1967).

    Google Scholar 

  5. International Nickel Co. Data Sheet, “Low-Expansion 36% Ni-Fe Alloys for Cryogenic Service.”

    Google Scholar 

  6. E. G. Kendell, “Metals and Alloys for Cryogenic Applications,” Technical Data Report, TDR-269 (4240–10)-6 (January 1964).

    Google Scholar 

  7. C. B. Post and W. S. Eberly, Trans. ASM 39, 868 (1947).

    Google Scholar 

  8. B. W. Birmingham, D. B. Chelton, D. B. Mann, and H. P. Hernandez, ASTM Bull. 240, 34 (1959).

    Google Scholar 

  9. International Nickel Co. Data Sheet, “Mechanical and Physical Properties of Austenitic Chrome-Nickel Stainless Steels at Room Temperature, Also Further Sheet on Low Temperature Properties.

    Google Scholar 

  10. C. S. Gunter and R. P. Reed, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 6 (1960), p. 565.

    Google Scholar 

  11. R. P. Reed, Acta. Met. 10, 865 (1962).

    Article  Google Scholar 

  12. C. E. Spaeder, J. C. Magelich, and K. G. Bricknev, Metal Progress 1969 (July), p. 57.

    Google Scholar 

  13. J. L. Christian, “Effects of Chemistry and Processing on the Mechanical Properties of Engineering Alloys at Cryogenic Temperatures”, Proc. 1964, Golden Gate Metals Conf., San Francisco, California (February 1964).

    Google Scholar 

  14. R. G. Broadwell and R. A. Wood, Materials Res. Standards 1964 (October), 549.

    Google Scholar 

  15. G. Greetham and R. W. K. Honeycombe, J. Inst. Metals 93, 432 (1964–65).

    Google Scholar 

  16. J. G. Byrne, M. E. Fine, and A. Kelly, Phil. Mag. 6, 1119 (1961).

    Article  Google Scholar 

  17. A. Kelly and R. B. Nicholson, “Precipitation Hardening,” in “Progress in Materials Science,” Pergamon, Oxford (1963).

    Google Scholar 

  18. D. Dew-Hughes and W. D. Robertson, Acta. Met. 8, 612 (1960).

    Article  Google Scholar 

  19. M. F. Ashby, Z. Metallk. 55, 5 (1964).

    Google Scholar 

  20. G. Liebfried, in J. Fisher et al. (Eds.) “Dislocations and Mechanical Properties of Crystals,” John Wiley and Sons, New York (1957), p. 495.

    Google Scholar 

  21. A. Kelly and C. Chiou, Acta. Met. 6 565 (1958).

    Article  Google Scholar 

  22. A. Kelly, A. Lassila, and S. Sato, Phil. Mag. 4, 1260 (1959).

    Article  Google Scholar 

  23. O. V. Klajvin and A. V. Stepanov, Soviet Phys—Solid State 1 (6), 955 (1959).

    Google Scholar 

  24. P. J. Rickards, British Cast Iron Res. Assn. J. 16 (5), 438 (1968).

    Google Scholar 

  25. W. K. Abbott, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 8 (1963), p. 654.

    Google Scholar 

  26. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A62, 490 (1951).

    Google Scholar 

  27. W. G. Johnson and J. J. Gilman, J. Appl. Phys. 30, 129 (1959)

    Article  Google Scholar 

  28. W. G. Johnson and J. J. Gilman, J. Appl. Phys. 33, 2050 (1962)

    Article  Google Scholar 

  29. W. G. Johnson and J. J. Gilman, J. Appl. Phys. 33, 2716 (1962).

    Article  Google Scholar 

  30. G. T. Hahn, Acta. Met. 10, 727 (1962).

    Article  Google Scholar 

  31. A. H. Cottrell and R. J. Stokes, Proc. Roy. Soc. A233, 17 (1955).

    Google Scholar 

  32. P. Haasen and A. Kelly, Acta. Met. 5, 192 (1967).

    Article  Google Scholar 

  33. M. J. Makin, Phil. Mag. 3, 287 (1958).

    Article  Google Scholar 

  34. E. T. Wessel, Trans. ASM 49, 149 (1957).

    Google Scholar 

  35. T. H. Blewitt, R. R. Coltman, and J. K. Redman, J. Appl. Phys. 28, 651 (1957).

    Article  Google Scholar 

  36. G. V. Uzhik. Jzv. Akad. Nauk SSSR, Otd. Tekhn. Nauk 1, 57 (1955).

    Google Scholar 

  37. S. C. Collins, F. D. Ezekial, D. W. Sepp, and J. W. Rizika Froc. ASTM 56, 687 (1956).

    Google Scholar 

  38. Z. S. Basinski, Froc. Roy. Soc. A240, 229 (1957).

    Article  Google Scholar 

  39. Z. S. Basinski, Aust. J. Phys. 13, 354 (1960).

    Article  Google Scholar 

  40. O. V. Kkjvin and A. V. Stepanov, Phys. Met. Metallog. 17 (4), 106 (1964).

    Google Scholar 

  41. R. L. Smith and J. L. Rutherford, Trans. AIME 209, 857 (1957).

    Google Scholar 

  42. J. F. Watson and J. L. Christian, J. Iron Steel Inst. 195, 229 (1957).

    Google Scholar 

  43. R. P. Reed and J. F. Breedis, ASTM STP 387, Am. Soc. Testing Mat., Philadelphia (1966), p. 60.

    Google Scholar 

  44. C. S. Gunter and R. P. Reed, Trans. ASM 55, 399 (1962).

    Google Scholar 

  45. E. O. Hall and S. H. Algie, Metallurgical Reviews 11, 104 (1966).

    Google Scholar 

  46. R. S. French and W. R. Hibbard, Trans. AIME 188, 53 (1950).

    Google Scholar 

  47. R. P. Reed and R. P. Mikeseil, in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 4 (1960), p. 84.

    Google Scholar 

  48. Handbook of the American Aluminum Association, 420 Lexington Avenue, New York, N. Y. 10017.

    Google Scholar 

  49. D. C. Larbalestier, Ph. D. Thesis, Imperial College, London, 1970.

    Google Scholar 

  50. D. C. Larbalestier and H. W. King, Rutherford High Energy Laboratory Report RHEL/R133, 1971; Cryogenics (to be published).

    Google Scholar 

  51. G. H. Eichelman and F. C. Hull, Trans. ASM 45, 77, (1953).

    Google Scholar 

  52. R. Lagneborg, Acta Met. 12, 823, (1964).

    Article  Google Scholar 

  53. H. C. Fiedler, B. L. Averbach, and M. Cohen, Trans. ASM 47, 267, (1955).

    Google Scholar 

  54. E. I. Kondorsky and V. L. Sedov, J. Appl. Phys. 31, 331S (1960).

    Article  Google Scholar 

  55. W. H. Meiklejohn, J. Appl. Phys. 32, 274S (1961).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Wigley, D.A. (1971). Deformation Processes in Impure Metals and Alloys. In: Mechanical Properties of Materials at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1887-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1887-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1889-7

  • Online ISBN: 978-1-4684-1887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics