Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

When a metal is loaded, the resultant deformation is initially elastic and the metal returns to its original state as the load is removed. If, however, the applied load exceeds the yield strength of the metal, it deforms plastically and the strain so produced is not recoverable when the load is released. In most metals, the stress necessary to cause plastic deformation increases with the strain because the material work-hardens, and for over 5000 years man has used this property to strengthen metals and make them more suitable for his needs. It is, however, only in the last few decades that the fundamental mechanisms responsible for these properties have begun to be understood, and even now there are a number of important details which remain to be elucidated. For example, the phenomenon of work-hardening is not yet fully explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books and Other Reference Works

  1. J. Wulff et al., The Structure and Properties of Materials, Vol. 1 (“Structure”) and Vol. 3 (“Mechanical Behavior”), John Wiley and Sons, New York (1965).

    Google Scholar 

  2. L. H. Van Vlack, Elements of Materials Science, Addison-Wesley, Reading, Mass. (1st ed. 1964, 2nd ed. 1970).

    Google Scholar 

  3. T. S. Serafini and J. L. Koenig, Cryogenic Properties of Polymers, Marcel Dekker, New York (1968).

    Google Scholar 

  4. H. F. Mark (Ed.), Encyclopedia of Polymer Science and Technology, Vol. 4, John Wiley and Sons, New York (1966), pp. 415–449.

    Google Scholar 

  5. L. J. Broutman and R. H. Krock, Modern Composite Materials, Addison-Wesley, Reading, Mass. (1967).

    Google Scholar 

  6. D. McLean, Mechanical Properties of Metals, John Wiley and Sons, New York (1962).

    Google Scholar 

  7. R. W. K. Honeycombe, The Plastic Deformation of Metals, Edward Arnold, London (1968).

    Google Scholar 

  8. F. A. McClintock and A. A. Argon, Introduction to Mechanical Behavior of Materials, Addison-Wesley, Reading, Mass. (1966).

    Google Scholar 

  9. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, London (1963).

    Google Scholar 

  10. D. Hull, Introduction to Dislocations, Pergamon Press, Oxford (1965).

    Google Scholar 

  11. E. Schmid and W. Boas, Kristallplastizitat, Springer-Verlag, Berlin (1935). English Translation, F. A. Hughes, Chapman and Hall (1968).

    Google Scholar 

  12. B. L. Averbach et al. (Eds.), Fracture, M.I.T.-John Wiley and Sons, New York (1959).

    Google Scholar 

  13. A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials, John Wiley and Sons, New York (1967).

    Google Scholar 

  14. American Society for Testing and Materials, “Metallic Materials for Low-Temperature Service,” ASTM, Philadelphia, STP 302 (1961).

    Google Scholar 

  15. American Society for Testing and Materials, “Behavior of Materials at Cryogenic Temperatures,” ASTM, Philadelphia, STP 387 (1966).

    Google Scholar 

  16. K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 16 (1971) and previous annual volumes.

    Google Scholar 

  17. R. B. Scott, Cryogenic Engineering, Van Nostrand, New York (1959).

    Google Scholar 

  18. G. G. Haselden, Cryogenic Fundamentals, Academic Press, London (to be published).

    Google Scholar 

  19. R. W. Vance and W. M. Duke, Applied Cryogenic Engineering, John Wiley and Sons, New York (1962).

    Google Scholar 

  20. R. Barron, Cryogenic Systems, McGraw-Hill, New York (1966).

    Google Scholar 

  21. R. H. Kropschot, B. W. Birmingham, and D. B. Mann, “Technology of Liquid Helium,” N.B.S. Monograph 111 (1968). (AU N.B.S. monographs sold by Superintendent of Documents, U.S. Govt. Printing Office, Washington 25, D.C.).

    Google Scholar 

  22. K. Mendelssohn, Cryophysics, Interscience, New York (1960).

    Google Scholar 

  23. H. M. Rosenberg, Low-Temperature Solid-State Physics, Clarendon Press, Oxford (1963).

    Google Scholar 

  24. F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London (1961).

    Google Scholar 

  25. G. K. White, Experimental Techniques in Low-Temperature Physics, Clarendon Press, Oxford (1968), 2nd ed.

    Google Scholar 

  26. A. C. Rose-Innes, Low-Temperature Techniques, English Universities Press, London (1964).

    Google Scholar 

  27. G. T. Meaden, Electrical Resistance of Metals, Plenum Press, New York (1965).

    Google Scholar 

  28. E. S. Raja Gopal, Specific Heats at Low Temperatures, Plenum Press, New York (1966).

    Book  Google Scholar 

  29. R. M. McClintock and H. P. Gibbons, “Mechanical Properties of Structural Materials at Low Temperatures,” N.B.S. Monograph 13 (1960).

    Google Scholar 

  30. K. A. Warren and R. P. Reed, “Tensile and Impact Properties of Selected Materials from 20° to 300°K,” N.B.S. Monograph 63 (1963).

    Google Scholar 

  31. R. P. Reed and R. P. Mikesell, “Low-temperature Mechanical Properties of Copper and Selected Copper Alloys,” N.B.S. Monograph 101 (1967).

    Google Scholar 

  32. F. R. Schwartzberg, S. H. Osgood, R. D. Keys, and T. I. Kiefer. “Cryogenic Materials Data Handbook,” Technical Document Report ML-TDR-280 (August 1964 and supplement March 1966).

    Google Scholar 

  33. “Cryogenic Data Book,” University of California Radiation Laboratory, U.C.R.L. 3421.

    Google Scholar 

  34. “Low Temperature and Cryogenic Steels,” United States Steel Materials Manual, 3rd ed., U.S. Steel Inc., New York (1968).

    Google Scholar 

  35. R. R. Conte, Elements de Cryogenie, Masson et Cie., Paris (1970).

    Google Scholar 

  36. R. B. Scott, W. H. Denton, and C. M. Nicholls, Technology and Uses of Liquid Hydrogen, Pergamon Press, Headington, Oxford (1964).

    Google Scholar 

  37. Cryogenics, Iliffe Press, Guildford, Surry, England.

    Google Scholar 

  38. Journal of Low Temperature Physics, Plenum Press, New York.

    Google Scholar 

  39. Ellen M. Codlin, Cryogenics and Refrigeration; A Bibliographical Guide, Plenum Press, New York (1968).

    Google Scholar 

Reviews

  1. A. Kelly, Fibre Reinforcement of Metals, H.M.S.O. London (1965).

    Google Scholar 

  2. T. E. Mitchell, “Dislocations and Plasticity in Single Crystals of Face-Centered-Cubic Metals and Alloys,” in E. G. Stanford et al. (Eds.), Progress in Applied Materials Research, Vol. 6, Heywood and Co., London (1964), p. 119.

    Google Scholar 

  3. F. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, “Plasticity of Pure Single Crystals,” Adv. Phys. 13, 50 (1964).

    Article  Google Scholar 

  4. H. Conrad, “The Cryogenic Properties of Metals,” in V. F. Zackay (Ed.), High-Strength Materials, John Wiley and Sons, New York (1964), p. 436.

    Google Scholar 

  5. P. G. Partridge, “The Crystallography and Deformation of Hexagonal-Close-Packed Metals,” Met. Revs. 12, 169 (1967).

    Article  Google Scholar 

  6. H. M. Rosenberg, “Research on the Mechanical Properties of Metals at Liquid-Helium Temperatures,” Met. Revs. 3, 357 (1958).

    Google Scholar 

  7. “The Relation between the Structure and Mechanical Properties of Metals,” National Physical Laboratory Symposium, H.M.S.O. (1963).

    Google Scholar 

  8. J. R. Low, “The Fracture of Metals,” in Progress in Materials Science, Vol. 12, Pergamon Press, Oxford (1963), p. 1.

    Google Scholar 

  9. R. J. Corruccini, “Properties of Materials at Low Temperatures,” Chem. Eng. Prog. 53(6), 262; (7), 342; (8), 397 (1957).

    Google Scholar 

  10. E. G. Kendell, “Metals and Alloys for Cryogenic Applications,” Technical Data Report, TDR-269 (4240–10)-6 (Jan. 1964).

    Google Scholar 

  11. R. R. McGee, J. E. Cambell, R. L. Carlson, and J. K. Manning, “The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures,” WADC TR 58–386 (November 1958).

    Google Scholar 

  12. R. J. Arsenault, “Low-Temperature Deformation Techniques,” in H. Herman (Ed.), Experimental Methods of Materials Research, Vol. 1, Interscience, New York (1967).

    Google Scholar 

  13. J. F. Watson, “Materials at Cryogenic Temperatures,” in Materials for Missiles and Spacecraft, McGraw-Hill, New York (1963).

    Google Scholar 

  14. J. F. Watson, J. L. Christian, and A. Hurlich, “Mechanical Properties of Metals,” in Physics of High Pressures and Condensed Phases, John Wiley and Sons, New York (1965).

    Google Scholar 

  15. H. L. Martin and A. G. Imgram, “Effects of Low Temperature on Structural Metals,” J. Metals 17, 735 (1965).

    Google Scholar 

  16. R. M. McClintock and R. L. Hauser, “Current Trends and Prospects in Mechanical Properties,” in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 631.

    Google Scholar 

Other References

  1. H. B. Huntington, Solid State Phys. 7, 213 (1958).

    Article  Google Scholar 

  2. W. Köster, Z. Metallic, 39, 145 (1948).

    Google Scholar 

  3. W. Köster and W. Rauscher, Z. Metallic, 39, 111 (1948).

    Google Scholar 

  4. M. E. Fine and N. T. Kenny, J. Metals 4, 151 (1952).

    Google Scholar 

  5. W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955).

    Article  Google Scholar 

  6. N. Dudzinski, J. Inst. Metals 81, 49 (1952–3).

    Google Scholar 

  7. A. Kelly, A. Lassila and S. Sato, Phil. Mag. 4, 1260 (1959).

    Article  Google Scholar 

  8. W. Köster and H. Franz, Met. Revs. 6, 1 (1961).

    Article  Google Scholar 

  9. E. Orowan, Z. Phys. 89, 605, 614, 634 (1934).

    Article  Google Scholar 

  10. M. Polanyi, Z. Phys. 89, 660 (1934).

    Article  Google Scholar 

  11. G. I. Taylor, Proc. Roy. Soc. A145, 613 (1934).

    Google Scholar 

  12. F. C. Frank and W. T. Read, Phys. Rev. 79, 722 (1950).

    Article  Google Scholar 

  13. A. Seeger, “Mechanism of Glide and Work Hardening in Face-Centred Cubic and Hexagonal Close-Packed Metals,” in Dislocations and Mechanical Properties of Crystals, J. Fisher et al. (Eds.), John Wiley and Sons, New York (1957).

    Google Scholar 

  14. W. M. Lomer, Phil. Mag. 42, 1327 (1951).

    Google Scholar 

  15. A. H. Cottrell, Phil. Mag. 43, 645 (1952).

    Google Scholar 

  16. E. O. Hall, Proc. Phys. Soc. 64B, 747 (1951).

    Google Scholar 

  17. N. J. Petch, J. Iron Steel Inst. 173, 25 (1953).

    Google Scholar 

  18. R. Von Mises, Z. Angew. Math. Mech. 8, 161 (1928).

    Article  Google Scholar 

  19. T. H. Blewitt, R. R. Coltman, and J. K. Redman, J. Appl. Phys. 28, 651 (1957).

    Article  Google Scholar 

  20. P. Hassen, Phil. Mag. 3, 384 (1958).

    Article  Google Scholar 

  21. A. H. Cottrell and R. J. Stokes, Proc. Roy. Soc. A233, 17 (1955).

    Google Scholar 

  22. R. P. Carrekar and W. R. Hibbard, Acta Met. 1, 654 (1953).

    Article  Google Scholar 

  23. H. Conrad, J. Metals 16, 582 (1964).

    Google Scholar 

  24. Z. S. Basinski, Phil. Mag. 4, 393 (1959).

    Article  Google Scholar 

  25. G. Y. Chin, W. F. Hosford, and W. A. Backofen, Trans. Met. Soc. AIME 230, 437 (1964).

    Google Scholar 

  26. B. A. Hands and H. M. Rosenberg, Acta Met. 17, 455 (1969).

    Article  Google Scholar 

  27. D. Hull and H. M. Rosenberg, Phil. Mag. 4, 303 (1959).

    Article  Google Scholar 

  28. I. A. Gindin, B. G. Lazerev, Ya. D. Starodubov, and M. B. Lazareva, Phys. Metals Metallog. 11(1), 49 (1961).

    Google Scholar 

  29. I. A. Gindin, B. G. Lazerev, and Ya. D. Starodubov, Phys. Metals Metallog. 10(3), 153 (1960).

    Google Scholar 

  30. D. Hull and H. M. Rosenberg, Cryogenics 1, 27 (1960).

    Article  Google Scholar 

  31. T. E. Mitchell, R. A. Foxall and P. B. Hirsch, Phil. Mag. 8, 1895 (1963).

    Article  Google Scholar 

  32. R. L. Smith and J. L. Rutherford, Trans. AIME 209, 857 (1957).

    Google Scholar 

  33. J. W. Christian and T. L. Altshuler, Acta Met. 14, 903 (1966).

    Article  Google Scholar 

  34. E. Anderson, D. Law, W. King and J. Spreadborough, Trans. Met. Soc. AIME 242, 115 (1968).

    Google Scholar 

  35. R. M. Codd and N. J. Petch, Phil. Mag. 5, 30 (1960).

    Article  Google Scholar 

  36. J. W. Christian and B. C. Masters, Proc. Roy. Soc. A281, 223, 240 (1964).

    Google Scholar 

  37. R. W. Thompson and O. N. Carlson, J. Less Common Metals 9, 354 (1965).

    Article  Google Scholar 

  38. E. A. Loria, J. Less Common Metals 10, 296 (1966).

    Article  Google Scholar 

  39. I. A. Gindin and Ya. D. Starodubov, Phys. Met. Metallog. 15(5), 80 (1963).

    Google Scholar 

  40. C. N. Reid, A. Gilbert, and G. T. Hahn, Acta Met. 14, 975 (1966).

    Article  Google Scholar 

  41. D. K. Bowen, J. W. Christian, and G. Taylor, Can. J. Phys. 45, 903 (1967).

    Article  Google Scholar 

  42. S. S. Lau, S. Ranji, A. K. Mukherjee, G. Thomas, and J. E. Dorn, Acta Met. 15, 237 (1967).

    Article  Google Scholar 

  43. T. E. Mitchell and W. A. Spitzig, Acta Met. 13, 1169 (1965).

    Article  Google Scholar 

  44. J. H. Bechtold, Acta Met. 3, 249 (1955).

    Article  Google Scholar 

  45. R. J. Arsenault, Acta Met. 14, 831 (1966).

    Article  Google Scholar 

  46. T. E. Mitchell and P. L. Raffo, Can. J. Phys. 45, 1047 (1967).

    Article  Google Scholar 

  47. C. N. Reid, A. Gilbert and G. T. Hahn, Trans. Met. Soc. AIME 239, 467 (1967).

    Google Scholar 

  48. A. Lawley and H. L. Gaigher, Phil. Mag. 10, 15 (1964).

    Article  Google Scholar 

  49. C. N. Reid, A. Gilbert, and G. T. Hahn, Trans. Met. Soc. AIME 236, 1024 (1966).

    Google Scholar 

  50. D. F. Stein, Can. J. Phys. 45, 1063 (1967).

    Article  Google Scholar 

  51. P. Beardmore and D. Hull, J. Less Common Metals 9, 168 (1965).

    Article  Google Scholar 

  52. A. S. Argon and S. R. Maloof, Acta Met. 14, 146 (1966).

    Google Scholar 

  53. J. C. Bilello, Phil Mag. 19, 583 (1969).

    Article  Google Scholar 

  54. Z. S. Basinski and J. W. Christian, Aust. J. Phys. 13, 299 (1960).

    Article  Google Scholar 

  55. D. S. Tomalin and D. F. Stein, Trans. Met. Soc. AIME 233, 2056 (1965).

    Google Scholar 

  56. D. F. Stein and J. R. Low, Acta Met. 14, 1183 (1966).

    Article  Google Scholar 

  57. T. L. Altshuler and J. W. Christian, Phil. Trans. Roy. Soc. A261, 235 (1967).

    Google Scholar 

  58. A. S. Keh and Y. Nakada, Can. J. Phys. 45, 1101 (1967).

    Article  Google Scholar 

  59. D. F. Stein, Acta Met. 14, 99 (1966).

    Article  Google Scholar 

  60. H. Conrad, Acta Met. 15, 147 (1967).

    Article  Google Scholar 

  61. D. F. Stein, Acta Met. 15, 150 (1967).

    Article  Google Scholar 

  62. R. L. Fleischer, Acta Met. 15, 1513 (1967).

    Article  Google Scholar 

  63. J. E. Dorn and S. Rajnak, Trans. AIME 230, 1052 (1964).

    Google Scholar 

  64. R. J. Arsenault, Acta Met. 15, 501 (1967).

    Article  Google Scholar 

  65. R. L. Fleischer, J. Appl. Phys. 33, 3504 (1962).

    Article  Google Scholar 

  66. R. J. Arsenault, Scripta Met. 2, 99, (1968).

    Article  Google Scholar 

  67. R. L. Fleischer, Scripta Met. 2, 113 (1968).

    Article  Google Scholar 

  68. J. W. Christian, Scripta Met. 2, 569 (1968).

    Article  Google Scholar 

  69. R. L. Fleischer, Scripta Met. 2, 573 (1968).

    Article  Google Scholar 

  70. P. M. Kelly, Scripta Met. 3, 149 (1969).

    Article  Google Scholar 

  71. N. R. Risebrough and E. Teghtsoonian, Can. J. Phys. 45, 591 (1967).

    Article  Google Scholar 

  72. W. J. McG. Tegart, Phil. Mag. 9, 339 (1964).

    Article  Google Scholar 

  73. R. L. Bell and R. W. Cahn, Proc. Roy. Soc. A239, 494 (1957).

    Google Scholar 

  74. M. L. Picklesimer, Electrochem. Technol. 4, 289 (1966).

    Google Scholar 

  75. D. H. Baldwin and R. E. Reed-Hill, Trans. AIME 233, 248 (1965).

    Google Scholar 

  76. C. S. Barrett and T. B. Massalski, Structure of Metals, McGraw-Hill, London and New York (1966).

    Google Scholar 

  77. E. B. Kula and T. S. De Sisto, in “Behavior of Metals at Cryogenic Temperatures,” Am. Soc. Testing Materials, STP 387 (1966).

    Google Scholar 

  78. H. Conrad, Can. J. Phys. 45, 581 (1967).

    Article  Google Scholar 

  79. H. Conrad, Acta Met. 14, 1631 (1966).

    Article  Google Scholar 

  80. Fleischer and W. R. Hibbard, in “The Relation between the Structure and Mechanical Properties of Metals,” NPL Conference, H.M.S.O. London (1963), p. 261.

    Google Scholar 

  81. R. H. Alper, Materials. Res. Standards 4, 525 (1964).

    Google Scholar 

  82. R. J. Arsenault, “Low-Temperature Deformation Techniques,” in Experimental Methods of Materials Research, H. Herman (Ed.), Vol. 1, Interscience, New York (1967), p. 215.

    Google Scholar 

  83. J. W. Glen, Phil. Mag. 1, 400 (1956).

    Article  Google Scholar 

  84. N. F. Mott, Phil. Mag. 1, 568 (1956).

    Article  Google Scholar 

  85. A. Arko and J. Weertman, J. Metals 17, 113 (1965).

    Google Scholar 

  86. O. Dimitrov, Conference on Properties of Very Pure Metals, C.N.R.S., Paris, (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Wigley, D.A. (1971). Deformation Processes in Pure Metals. In: Mechanical Properties of Materials at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1887-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1887-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1889-7

  • Online ISBN: 978-1-4684-1887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics