Deformation Processes in Pure Metals

  • D. A. Wigley
Part of the The International Cryogenics Monograph Series book series (INCMS)


When a metal is loaded, the resultant deformation is initially elastic and the metal returns to its original state as the load is removed. If, however, the applied load exceeds the yield strength of the metal, it deforms plastically and the strain so produced is not recoverable when the load is released. In most metals, the stress necessary to cause plastic deformation increases with the strain because the material work-hardens, and for over 5000 years man has used this property to strengthen metals and make them more suitable for his needs. It is, however, only in the last few decades that the fundamental mechanisms responsible for these properties have begun to be understood, and even now there are a number of important details which remain to be elucidated. For example, the phenomenon of work-hardening is not yet fully explained.


Flow Stress Slip System Pure Metal Critical Resolve Shear Stress Ultimate Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Books and Other Reference Works

  1. 1.
    J. Wulff et al., The Structure and Properties of Materials, Vol. 1 (“Structure”) and Vol. 3 (“Mechanical Behavior”), John Wiley and Sons, New York (1965).Google Scholar
  2. 2.
    L. H. Van Vlack, Elements of Materials Science, Addison-Wesley, Reading, Mass. (1st ed. 1964, 2nd ed. 1970).Google Scholar
  3. 3.
    T. S. Serafini and J. L. Koenig, Cryogenic Properties of Polymers, Marcel Dekker, New York (1968).Google Scholar
  4. 4.
    H. F. Mark (Ed.), Encyclopedia of Polymer Science and Technology, Vol. 4, John Wiley and Sons, New York (1966), pp. 415–449.Google Scholar
  5. 5.
    L. J. Broutman and R. H. Krock, Modern Composite Materials, Addison-Wesley, Reading, Mass. (1967).Google Scholar
  6. 6.
    D. McLean, Mechanical Properties of Metals, John Wiley and Sons, New York (1962).Google Scholar
  7. 7.
    R. W. K. Honeycombe, The Plastic Deformation of Metals, Edward Arnold, London (1968).Google Scholar
  8. 8.
    F. A. McClintock and A. A. Argon, Introduction to Mechanical Behavior of Materials, Addison-Wesley, Reading, Mass. (1966).Google Scholar
  9. 9.
    A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, London (1963).Google Scholar
  10. 10.
    D. Hull, Introduction to Dislocations, Pergamon Press, Oxford (1965).Google Scholar
  11. 11.
    E. Schmid and W. Boas, Kristallplastizitat, Springer-Verlag, Berlin (1935). English Translation, F. A. Hughes, Chapman and Hall (1968).Google Scholar
  12. 12.
    B. L. Averbach et al. (Eds.), Fracture, M.I.T.-John Wiley and Sons, New York (1959).Google Scholar
  13. 13.
    A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials, John Wiley and Sons, New York (1967).Google Scholar
  14. 14.
    American Society for Testing and Materials, “Metallic Materials for Low-Temperature Service,” ASTM, Philadelphia, STP 302 (1961).Google Scholar
  15. 15.
    American Society for Testing and Materials, “Behavior of Materials at Cryogenic Temperatures,” ASTM, Philadelphia, STP 387 (1966).Google Scholar
  16. 16.
    K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, Vol. 16 (1971) and previous annual volumes.Google Scholar
  17. 17.
    R. B. Scott, Cryogenic Engineering, Van Nostrand, New York (1959).Google Scholar
  18. 18.
    G. G. Haselden, Cryogenic Fundamentals, Academic Press, London (to be published).Google Scholar
  19. 19.
    R. W. Vance and W. M. Duke, Applied Cryogenic Engineering, John Wiley and Sons, New York (1962).Google Scholar
  20. 20.
    R. Barron, Cryogenic Systems, McGraw-Hill, New York (1966).Google Scholar
  21. 21.
    R. H. Kropschot, B. W. Birmingham, and D. B. Mann, “Technology of Liquid Helium,” N.B.S. Monograph 111 (1968). (AU N.B.S. monographs sold by Superintendent of Documents, U.S. Govt. Printing Office, Washington 25, D.C.).Google Scholar
  22. 22.
    K. Mendelssohn, Cryophysics, Interscience, New York (1960).Google Scholar
  23. 23.
    H. M. Rosenberg, Low-Temperature Solid-State Physics, Clarendon Press, Oxford (1963).Google Scholar
  24. 24.
    F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London (1961).Google Scholar
  25. 25.
    G. K. White, Experimental Techniques in Low-Temperature Physics, Clarendon Press, Oxford (1968), 2nd ed.Google Scholar
  26. 26.
    A. C. Rose-Innes, Low-Temperature Techniques, English Universities Press, London (1964).Google Scholar
  27. 27.
    G. T. Meaden, Electrical Resistance of Metals, Plenum Press, New York (1965).Google Scholar
  28. 28.
    E. S. Raja Gopal, Specific Heats at Low Temperatures, Plenum Press, New York (1966).CrossRefGoogle Scholar
  29. 29.
    R. M. McClintock and H. P. Gibbons, “Mechanical Properties of Structural Materials at Low Temperatures,” N.B.S. Monograph 13 (1960).Google Scholar
  30. 30.
    K. A. Warren and R. P. Reed, “Tensile and Impact Properties of Selected Materials from 20° to 300°K,” N.B.S. Monograph 63 (1963).Google Scholar
  31. 31.
    R. P. Reed and R. P. Mikesell, “Low-temperature Mechanical Properties of Copper and Selected Copper Alloys,” N.B.S. Monograph 101 (1967).Google Scholar
  32. 32.
    F. R. Schwartzberg, S. H. Osgood, R. D. Keys, and T. I. Kiefer. “Cryogenic Materials Data Handbook,” Technical Document Report ML-TDR-280 (August 1964 and supplement March 1966).Google Scholar
  33. 33.
    “Cryogenic Data Book,” University of California Radiation Laboratory, U.C.R.L. 3421.Google Scholar
  34. 34.
    “Low Temperature and Cryogenic Steels,” United States Steel Materials Manual, 3rd ed., U.S. Steel Inc., New York (1968).Google Scholar
  35. 35.
    R. R. Conte, Elements de Cryogenie, Masson et Cie., Paris (1970).Google Scholar
  36. 36.
    R. B. Scott, W. H. Denton, and C. M. Nicholls, Technology and Uses of Liquid Hydrogen, Pergamon Press, Headington, Oxford (1964).Google Scholar
  37. 37.
    Cryogenics, Iliffe Press, Guildford, Surry, England.Google Scholar
  38. 38.
    Journal of Low Temperature Physics, Plenum Press, New York.Google Scholar
  39. 39.
    Ellen M. Codlin, Cryogenics and Refrigeration; A Bibliographical Guide, Plenum Press, New York (1968).Google Scholar


  1. 40.
    A. Kelly, Fibre Reinforcement of Metals, H.M.S.O. London (1965).Google Scholar
  2. 41.
    T. E. Mitchell, “Dislocations and Plasticity in Single Crystals of Face-Centered-Cubic Metals and Alloys,” in E. G. Stanford et al. (Eds.), Progress in Applied Materials Research, Vol. 6, Heywood and Co., London (1964), p. 119.Google Scholar
  3. 42.
    F. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, “Plasticity of Pure Single Crystals,” Adv. Phys. 13, 50 (1964).CrossRefGoogle Scholar
  4. 43.
    H. Conrad, “The Cryogenic Properties of Metals,” in V. F. Zackay (Ed.), High-Strength Materials, John Wiley and Sons, New York (1964), p. 436.Google Scholar
  5. 44.
    P. G. Partridge, “The Crystallography and Deformation of Hexagonal-Close-Packed Metals,” Met. Revs. 12, 169 (1967).CrossRefGoogle Scholar
  6. 45.
    H. M. Rosenberg, “Research on the Mechanical Properties of Metals at Liquid-Helium Temperatures,” Met. Revs. 3, 357 (1958).Google Scholar
  7. 46.
    “The Relation between the Structure and Mechanical Properties of Metals,” National Physical Laboratory Symposium, H.M.S.O. (1963).Google Scholar
  8. 47.
    J. R. Low, “The Fracture of Metals,” in Progress in Materials Science, Vol. 12, Pergamon Press, Oxford (1963), p. 1.Google Scholar
  9. 48.
    R. J. Corruccini, “Properties of Materials at Low Temperatures,” Chem. Eng. Prog. 53(6), 262; (7), 342; (8), 397 (1957).Google Scholar
  10. 49.
    E. G. Kendell, “Metals and Alloys for Cryogenic Applications,” Technical Data Report, TDR-269 (4240–10)-6 (Jan. 1964).Google Scholar
  11. 50.
    R. R. McGee, J. E. Cambell, R. L. Carlson, and J. K. Manning, “The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures,” WADC TR 58–386 (November 1958).Google Scholar
  12. 51.
    R. J. Arsenault, “Low-Temperature Deformation Techniques,” in H. Herman (Ed.), Experimental Methods of Materials Research, Vol. 1, Interscience, New York (1967).Google Scholar
  13. 52.
    J. F. Watson, “Materials at Cryogenic Temperatures,” in Materials for Missiles and Spacecraft, McGraw-Hill, New York (1963).Google Scholar
  14. 53.
    J. F. Watson, J. L. Christian, and A. Hurlich, “Mechanical Properties of Metals,” in Physics of High Pressures and Condensed Phases, John Wiley and Sons, New York (1965).Google Scholar
  15. 54.
    H. L. Martin and A. G. Imgram, “Effects of Low Temperature on Structural Metals,” J. Metals 17, 735 (1965).Google Scholar
  16. 55.
    R. M. McClintock and R. L. Hauser, “Current Trends and Prospects in Mechanical Properties,” in K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 631.Google Scholar

Other References

  1. 60.
    H. B. Huntington, Solid State Phys. 7, 213 (1958).CrossRefGoogle Scholar
  2. 61.
    W. Köster, Z. Metallic, 39, 145 (1948).Google Scholar
  3. 62.
    W. Köster and W. Rauscher, Z. Metallic, 39, 111 (1948).Google Scholar
  4. 63.
    M. E. Fine and N. T. Kenny, J. Metals 4, 151 (1952).Google Scholar
  5. 64.
    W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955).CrossRefGoogle Scholar
  6. 65.
    N. Dudzinski, J. Inst. Metals 81, 49 (1952–3).Google Scholar
  7. 66.
    A. Kelly, A. Lassila and S. Sato, Phil. Mag. 4, 1260 (1959).CrossRefGoogle Scholar
  8. 67.
    W. Köster and H. Franz, Met. Revs. 6, 1 (1961).CrossRefGoogle Scholar
  9. 68.
    E. Orowan, Z. Phys. 89, 605, 614, 634 (1934).CrossRefGoogle Scholar
  10. 69.
    M. Polanyi, Z. Phys. 89, 660 (1934).CrossRefGoogle Scholar
  11. 70.
    G. I. Taylor, Proc. Roy. Soc. A145, 613 (1934).Google Scholar
  12. 71.
    F. C. Frank and W. T. Read, Phys. Rev. 79, 722 (1950).CrossRefGoogle Scholar
  13. 72.
    A. Seeger, “Mechanism of Glide and Work Hardening in Face-Centred Cubic and Hexagonal Close-Packed Metals,” in Dislocations and Mechanical Properties of Crystals, J. Fisher et al. (Eds.), John Wiley and Sons, New York (1957).Google Scholar
  14. 73.
    W. M. Lomer, Phil. Mag. 42, 1327 (1951).Google Scholar
  15. 74.
    A. H. Cottrell, Phil. Mag. 43, 645 (1952).Google Scholar
  16. 75.
    E. O. Hall, Proc. Phys. Soc. 64B, 747 (1951).Google Scholar
  17. 76.
    N. J. Petch, J. Iron Steel Inst. 173, 25 (1953).Google Scholar
  18. 77.
    R. Von Mises, Z. Angew. Math. Mech. 8, 161 (1928).CrossRefGoogle Scholar
  19. 78.
    T. H. Blewitt, R. R. Coltman, and J. K. Redman, J. Appl. Phys. 28, 651 (1957).CrossRefGoogle Scholar
  20. 79.
    P. Hassen, Phil. Mag. 3, 384 (1958).CrossRefGoogle Scholar
  21. 80.
    A. H. Cottrell and R. J. Stokes, Proc. Roy. Soc. A233, 17 (1955).Google Scholar
  22. 81.
    R. P. Carrekar and W. R. Hibbard, Acta Met. 1, 654 (1953).CrossRefGoogle Scholar
  23. 82.
    H. Conrad, J. Metals 16, 582 (1964).Google Scholar
  24. 83.
    Z. S. Basinski, Phil. Mag. 4, 393 (1959).CrossRefGoogle Scholar
  25. 84.
    G. Y. Chin, W. F. Hosford, and W. A. Backofen, Trans. Met. Soc. AIME 230, 437 (1964).Google Scholar
  26. 85.
    B. A. Hands and H. M. Rosenberg, Acta Met. 17, 455 (1969).CrossRefGoogle Scholar
  27. 86.
    D. Hull and H. M. Rosenberg, Phil. Mag. 4, 303 (1959).CrossRefGoogle Scholar
  28. 87.
    I. A. Gindin, B. G. Lazerev, Ya. D. Starodubov, and M. B. Lazareva, Phys. Metals Metallog. 11(1), 49 (1961).Google Scholar
  29. 88.
    I. A. Gindin, B. G. Lazerev, and Ya. D. Starodubov, Phys. Metals Metallog. 10(3), 153 (1960).Google Scholar
  30. 89.
    D. Hull and H. M. Rosenberg, Cryogenics 1, 27 (1960).CrossRefGoogle Scholar
  31. 90.
    T. E. Mitchell, R. A. Foxall and P. B. Hirsch, Phil. Mag. 8, 1895 (1963).CrossRefGoogle Scholar
  32. 91.
    R. L. Smith and J. L. Rutherford, Trans. AIME 209, 857 (1957).Google Scholar
  33. 92.
    J. W. Christian and T. L. Altshuler, Acta Met. 14, 903 (1966).CrossRefGoogle Scholar
  34. 93.
    E. Anderson, D. Law, W. King and J. Spreadborough, Trans. Met. Soc. AIME 242, 115 (1968).Google Scholar
  35. 94.
    R. M. Codd and N. J. Petch, Phil. Mag. 5, 30 (1960).CrossRefGoogle Scholar
  36. 95.
    J. W. Christian and B. C. Masters, Proc. Roy. Soc. A281, 223, 240 (1964).Google Scholar
  37. 96.
    R. W. Thompson and O. N. Carlson, J. Less Common Metals 9, 354 (1965).CrossRefGoogle Scholar
  38. 97.
    E. A. Loria, J. Less Common Metals 10, 296 (1966).CrossRefGoogle Scholar
  39. 98.
    I. A. Gindin and Ya. D. Starodubov, Phys. Met. Metallog. 15(5), 80 (1963).Google Scholar
  40. 99.
    C. N. Reid, A. Gilbert, and G. T. Hahn, Acta Met. 14, 975 (1966).CrossRefGoogle Scholar
  41. 100.
    D. K. Bowen, J. W. Christian, and G. Taylor, Can. J. Phys. 45, 903 (1967).CrossRefGoogle Scholar
  42. 101.
    S. S. Lau, S. Ranji, A. K. Mukherjee, G. Thomas, and J. E. Dorn, Acta Met. 15, 237 (1967).CrossRefGoogle Scholar
  43. 102.
    T. E. Mitchell and W. A. Spitzig, Acta Met. 13, 1169 (1965).CrossRefGoogle Scholar
  44. 103.
    J. H. Bechtold, Acta Met. 3, 249 (1955).CrossRefGoogle Scholar
  45. 104.
    R. J. Arsenault, Acta Met. 14, 831 (1966).CrossRefGoogle Scholar
  46. 105.
    T. E. Mitchell and P. L. Raffo, Can. J. Phys. 45, 1047 (1967).CrossRefGoogle Scholar
  47. 106.
    C. N. Reid, A. Gilbert and G. T. Hahn, Trans. Met. Soc. AIME 239, 467 (1967).Google Scholar
  48. 107.
    A. Lawley and H. L. Gaigher, Phil. Mag. 10, 15 (1964).CrossRefGoogle Scholar
  49. 108.
    C. N. Reid, A. Gilbert, and G. T. Hahn, Trans. Met. Soc. AIME 236, 1024 (1966).Google Scholar
  50. 109.
    D. F. Stein, Can. J. Phys. 45, 1063 (1967).CrossRefGoogle Scholar
  51. 110.
    P. Beardmore and D. Hull, J. Less Common Metals 9, 168 (1965).CrossRefGoogle Scholar
  52. 111.
    A. S. Argon and S. R. Maloof, Acta Met. 14, 146 (1966).Google Scholar
  53. 112.
    J. C. Bilello, Phil Mag. 19, 583 (1969).CrossRefGoogle Scholar
  54. 113.
    Z. S. Basinski and J. W. Christian, Aust. J. Phys. 13, 299 (1960).CrossRefGoogle Scholar
  55. 114.
    D. S. Tomalin and D. F. Stein, Trans. Met. Soc. AIME 233, 2056 (1965).Google Scholar
  56. 115.
    D. F. Stein and J. R. Low, Acta Met. 14, 1183 (1966).CrossRefGoogle Scholar
  57. 116.
    T. L. Altshuler and J. W. Christian, Phil. Trans. Roy. Soc. A261, 235 (1967).Google Scholar
  58. 117.
    A. S. Keh and Y. Nakada, Can. J. Phys. 45, 1101 (1967).CrossRefGoogle Scholar
  59. 118.
    D. F. Stein, Acta Met. 14, 99 (1966).CrossRefGoogle Scholar
  60. 119.
    H. Conrad, Acta Met. 15, 147 (1967).CrossRefGoogle Scholar
  61. 120.
    D. F. Stein, Acta Met. 15, 150 (1967).CrossRefGoogle Scholar
  62. 121.
    R. L. Fleischer, Acta Met. 15, 1513 (1967).CrossRefGoogle Scholar
  63. 122.
    J. E. Dorn and S. Rajnak, Trans. AIME 230, 1052 (1964).Google Scholar
  64. 123.
    R. J. Arsenault, Acta Met. 15, 501 (1967).CrossRefGoogle Scholar
  65. 124.
    R. L. Fleischer, J. Appl. Phys. 33, 3504 (1962).CrossRefGoogle Scholar
  66. 125.
    R. J. Arsenault, Scripta Met. 2, 99, (1968).CrossRefGoogle Scholar
  67. 126.
    R. L. Fleischer, Scripta Met. 2, 113 (1968).CrossRefGoogle Scholar
  68. 127.
    J. W. Christian, Scripta Met. 2, 569 (1968).CrossRefGoogle Scholar
  69. 128.
    R. L. Fleischer, Scripta Met. 2, 573 (1968).CrossRefGoogle Scholar
  70. 129.
    P. M. Kelly, Scripta Met. 3, 149 (1969).CrossRefGoogle Scholar
  71. 130.
    N. R. Risebrough and E. Teghtsoonian, Can. J. Phys. 45, 591 (1967).CrossRefGoogle Scholar
  72. 131.
    W. J. McG. Tegart, Phil. Mag. 9, 339 (1964).CrossRefGoogle Scholar
  73. 132.
    R. L. Bell and R. W. Cahn, Proc. Roy. Soc. A239, 494 (1957).Google Scholar
  74. 133.
    M. L. Picklesimer, Electrochem. Technol. 4, 289 (1966).Google Scholar
  75. 134.
    D. H. Baldwin and R. E. Reed-Hill, Trans. AIME 233, 248 (1965).Google Scholar
  76. 135.
    C. S. Barrett and T. B. Massalski, Structure of Metals, McGraw-Hill, London and New York (1966).Google Scholar
  77. 136.
    E. B. Kula and T. S. De Sisto, in “Behavior of Metals at Cryogenic Temperatures,” Am. Soc. Testing Materials, STP 387 (1966).Google Scholar
  78. 137.
    H. Conrad, Can. J. Phys. 45, 581 (1967).CrossRefGoogle Scholar
  79. 138.
    H. Conrad, Acta Met. 14, 1631 (1966).CrossRefGoogle Scholar
  80. 139.
    Fleischer and W. R. Hibbard, in “The Relation between the Structure and Mechanical Properties of Metals,” NPL Conference, H.M.S.O. London (1963), p. 261.Google Scholar
  81. 140.
    R. H. Alper, Materials. Res. Standards 4, 525 (1964).Google Scholar
  82. 141.
    R. J. Arsenault, “Low-Temperature Deformation Techniques,” in Experimental Methods of Materials Research, H. Herman (Ed.), Vol. 1, Interscience, New York (1967), p. 215.Google Scholar
  83. 142.
    J. W. Glen, Phil. Mag. 1, 400 (1956).CrossRefGoogle Scholar
  84. 143.
    N. F. Mott, Phil. Mag. 1, 568 (1956).CrossRefGoogle Scholar
  85. 144.
    A. Arko and J. Weertman, J. Metals 17, 113 (1965).Google Scholar
  86. 145.
    O. Dimitrov, Conference on Properties of Very Pure Metals, C.N.R.S., Paris, (1960).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. A. Wigley
    • 1
  1. 1.Engineering LaboratoriesThe University of SouthamptonSouthamptonEngland

Personalised recommendations