Skip to main content

Oxygenation of Blood for Clinical Applications

  • Chapter
Blood Oxygenation

Abstract

The analytical description of blood oxygenation is of both practical and theoretical importance. The design of clinical oxygenators in the past has been based on experimental trials, whereas the newer generation of such devices rely upon theoretical analysis or implications. Initial clinical use of oxygenators was for short-term open heart surgery, and direct contact of blood with the gas phase was allowed (1). Longer term lung prosthesis or assistance would be possible if the trauma associated with this direct contact could be avoided (2). For this reason, membrane oxygenators have been proposed where the flowing blood and gas phases are separated by a permeable membrane. The interposing of such a membrane results in several problems associated with the additional resistance to the transfer of O2 and CO2 compared with the direct contact oxygenators. Not only Is there a resistance associated with the membrane itself, but the blood adjacent to the membrane approaches stagnant conditions. The zero flow membrane region results in diffusion controlled mass transfer which is generally more significant in dictating oxygenator size (and complexity) than is the membrane resistance. A recent proliferation of membrane oxygenator design innovations reflect attempts to augment diffusion with convection in the direction perpendicular to the flow (3,4,5). Whereas diffusion is an extremely efficient method of transfer over short distances (10−4 cm.) (6), it is ineffective in practical channel dimensions (0.1 cm.). Therefore, an understanding of diffusional processes in a flowing blood stream is of immediate practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Galletti, P.M., and Brecher, G.A., “heart-Lung Bypass,” Grupe and Stratton, New York (1962).

    Google Scholar 

  2. Dorson, W. Jr., Baker, E., and Hull, H., “ Trans. Amer. Soc Actif, Int. Organs, 14, 242 (1968).

    Google Scholar 

  3. Rush, B.F. Jr., Boone, R., and Merlette, W., Trans. Amer. Soc. Artif. Int. Organs, 15, 178 (1969).

    Google Scholar 

  4. Lande, A.J., Parker, B., Subramanian, V., Carlson, R.G., and Lillehei, C.W., Trans. Amer. Soc. Actif. Int. Organs, 14, 227 (1968).

    CAS  Google Scholar 

  5. Kolobow, T., and Bowman, R.L., Trans. Amer. Soc. Artif. In. Organs, 2, 238 (1963).

    Google Scholar 

  6. Riggs, D.S., “The Mathematical Approach to Physiological Problems,” p. 179, Williams and Wilkins Co., Baltimore (1963).

    Google Scholar 

  7. Friedlander, S.K., and Keller, K.H., Chem. Eng. Sci., 20, 121 (1965).

    Article  CAS  Google Scholar 

  8. O. Whittani, R., “Transport and Diffusion in Red Blood Cells,” Williams and Wilkins Co., Baltimore (1964).

    Google Scholar 

  9. Dintenfass, L., Acta haemat., 32, 299 (1964).

    Article  PubMed  CAS  Google Scholar 

  10. Adair, G.S., J. Biol. Chem., 62, 529 (1925).

    Google Scholar 

  11. Margaria, R., Clin. Chem., 22, 745 (1963).

    Google Scholar 

  12. Hill, A.V., J. Physiol. (London), 40, 4p (1910).

    Google Scholar 

  13. Weissman, M.H., and Mockros, L.F., J. Eng. Mech. Div., A.S.C.E., 93, 225 (1967).

    Google Scholar 

  14. Weissman, M.H., and Mockros, L.F., J. Eng. Mech. Div., A.S.C.E., 94, 857 (1968).

    Google Scholar 

  15. Buckles, R.G., Merrill, E.W., and Gilliland, E.R., A.I.Ch.E. Journal, 14, 703 (1968).

    Article  CAS  Google Scholar 

  16. Spaeth, E.E., and Friedlander, S.K., Biophys. J., 7, 827 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. Wittenberg, J.B., J. Gen. Physiol., 49, 57 (1965).

    Article  PubMed  CAS  Google Scholar 

  18. Scholander, P.F., Science, 131, 585 (1960).

    Article  PubMed  CAS  Google Scholar 

  19. Roughton, F.J.W., Progr. Biophys., Biophys. Chem., 9, 55 (1959).

    Google Scholar 

  20. Kreuzer, F., and Yahr, W.Z., J. Appl. Physiol., 15, 1117 (1960).

    PubMed  CAS  Google Scholar 

  21. Sendroy, J. Jr., Dillon, R.T., and Van Slyke, D.D., J. Biol. Chem., 105, 597 (1935).

    Google Scholar 

  22. Dorson, W.J. Jr., and Hershey, D., Dig. 7th. Inter. Conf. Med. Biol. Eng., 374 (1967).

    Google Scholar 

  23. Colton, C.K., Ph.D. thesis, Mass. Inst. Tech., Cambridge (1969).

    Google Scholar 

  24. Spaeth, E.E., Ph.D. thesis, Calif. Inst. Tech., Pasadena (1967).

    Google Scholar 

  25. Fricke, H., Physical Rev., 24, 575 (1924).

    Article  CAS  Google Scholar 

  26. La Force, R.C., and Fatt, I., Trans. Far. Soc., 58, 1451 (1962).

    Article  Google Scholar 

  27. Hershey, D., and Karhan, T., A.I.Ch.E. Journal, 14, 969 (1968).

    Article  CAS  Google Scholar 

  28. Marx, T.I., Snyder, W.E., St. John, A.D., and Moeller, C.E., J. Appl. Physiol., 15, 1123 (1960).

    PubMed  CAS  Google Scholar 

  29. Lightfoot, E.N., A.I.Ch.E. Journal, 14, 669 (1968).

    Article  CAS  Google Scholar 

  30. Dorson, W. Jr., Baker, E., Cohen, M.L., Meyer, B., Molthan, M., Trump, D., and Elgas, R., Trans. Amer. Soc. Artif. In. Organs, 15, 155 (1969).

    Google Scholar 

  31. Miller, C.J., M.S. thesis, Univ. Cincinnati, Cincinnati (1965).

    Google Scholar 

  32. Landino, E., McCreary, J.G., Thompson, W.A., and Powers, J.E., A.I.Ch.E. Journal, 12, 117 (1966).

    Article  CAS  Google Scholar 

  33. Dorson, W.J., Jr., Proc. Conf. Eng. Med. Biol., 20, 29. 1 (1967).

    Google Scholar 

  34. Bird, R.B., Steward, W.E., and Lightfoot, E.N., “Transport Phenomena,” John Wiley, New York (1960).

    Google Scholar 

  35. Buckles, R.G. Ph.D. thesis, Mass. Inst. Tech., Cambridge(1966).

    Google Scholar 

  36. Weissman, M., Ph.D. thesis, Northwestern Univ., Evanston(1967).

    Google Scholar 

  37. Van Slyke, D.D., and Neill, J.M., J. Biol. Chem., 61, 523 (1924).

    Google Scholar 

  38. Goldstick, T.K., Ph.D. thesis, Univ. Calif., Berkeley (1966).

    Google Scholar 

  39. Power, G.G., J. Appt. Physiol., 24, 468 (1968).

    CAS  Google Scholar 

  40. Medley Whyte, J., and Laver, M.B., J. Appl. Physiol., 12, 901 (1964).

    Google Scholar 

  41. Goldstick, T.K., Allen, B.J., and Fry, W.A., Proc. 8th. Inter. Conf. Med. Biol. Eng., 1. 2 (1969).

    Google Scholar 

  42. Dorson, W.J. Jr., Baker, E., Hull, H., Molthan, M., Meyer, B., Fargotstein, R., and Cohen, M.L., Ann. Thorac. Surg., 8, 297 (1969).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Dorson, W.J. (1970). Oxygenation of Blood for Clinical Applications. In: Hershey, D. (eds) Blood Oxygenation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1857-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1857-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1859-0

  • Online ISBN: 978-1-4684-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics