Skip to main content

Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques

  • Chapter
Book cover Membrane Science and Technology

Abstract

In the past 5 years, membrane ultrafiltration has gained increasing prominence as a simple and convenient process for concentrating, purifying, and fractionating solutions of moderate-to-high molecular weight solutes and colloids, and for purifying water and other solvents containing such solutes. The emergence of this new molecular separation technique for both laboratory and industrial applications is almost entirely attributable to the development of a family of uniquely structured polymeric membranes which display extraordinarily high hydraulic permeabilities coupled with the capacity to retain even quite small solute molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vink, Hans, Acta Chem Scand., 20 (8), 2245–9 (1966).

    Article  CAS  Google Scholar 

  2. Johnson, J. S., Dresner, L., and Kraus, K., “Hyperfiltration (Reverse Osmosis)”, Chapter 8 in Principles of Desalination, K. S. Spiegler, Ed., Academic Press, New York (1966).

    Google Scholar 

  3. Spiegler, K. S., and Kedem, O., Desalination (1), 311–326 (1966).

    Article  CAS  Google Scholar 

  4. Kedem, O., and Katchalsky, A., J. Gen. Physiology, 45, 143 (1961).

    Article  CAS  Google Scholar 

  5. Brian, P.L.T., I&EC Fund, 4, 439 (1965).

    Article  CAS  Google Scholar 

  6. Sherwood, T. K., Brian, P.L.T., Fisher, R. E., and Dresner, L., I&EC Fund, 4, 113 (1965).

    Article  CAS  Google Scholar 

  7. Gill, W. N., Tien, C., and Zeh, D., I&EC Fund, 5, 367 (1966).

    Article  CAS  Google Scholar 

  8. Kimura, S., and Sourirajan, S., I&EC Proc. Design and Dev., 7 (1), 41–48 (1968).

    Article  CAS  Google Scholar 

  9. Chilton, T. H., and Colburn, A., Ind. Eng. Chem., 26, 1183 (1934).

    Article  CAS  Google Scholar 

  10. Blasius, H., Z. Math. Phys., 56, 1–37 (1908).

    Google Scholar 

  11. Fisher, R., Ph.D. Thesis, MIT, Department of Chemical Engineering (1961).

    Google Scholar 

  12. Dresner, L., Oak Ridge National Lab 3621 (May 1964).

    Google Scholar 

  13. Shor, A. J., Kraus, K. A., Johnson, J. S., and Smith, W. T., I&EC Fund, 7 (1), 44–48 (1968).

    Article  CAS  Google Scholar 

  14. Johnson, Kraus, et al., French Patent 1,497,295.

    Google Scholar 

  15. Graetz, L., Ann. d. Physik., 25, 337–357 (1885).

    Article  Google Scholar 

  16. Leveque, J., Ann. Mines, 13, 201, 305, 381 (1928).

    Google Scholar 

  17. Calderbank, P. H., and Moo-Young, M. B., Chem. Eng. Sci., 16, 34 (1961).

    Google Scholar 

  18. Chilton, T. H., and Colburn, A., Ind. Eng. Chem., 26, 1183 (1934).

    Article  CAS  Google Scholar 

  19. Colton, C. K., Ph.D. Thesis, MIT, Dept. of Chem. Eng. (1969).

    Google Scholar 

  20. Marangozis, J., and Johnson, A. I., Can. J. Chem. Eng., 40, 231 (1962).

    Article  CAS  Google Scholar 

  21. Baker, R. W., J. Appl. Poly. Sci., 13, 369–376 (1966).

    Article  Google Scholar 

  22. Weissman, B. J., Smith, C. V., Jr., and Okey, R. W., Chem. Eng. Prog. Symp. Series, 64 (90), 285 (1968).

    Google Scholar 

  23. Work performed by the Amicon Corporation under support from the Fats and Proteins Research Foundation, Inc., of Des Plaines, Illinois.

    Google Scholar 

  24. Bixler, H. J., Nelsen, L. M., and Besarab, A., “The Diaphron Hemodiafilter: An Alternative to Dialysis for Extracorporeal Blood Purification”, Chem. Eng. Prog. Symp. Series, 64 (84), 90–103 (1968).

    CAS  Google Scholar 

  25. Bixler, H. J., Nelsen, L. M., and Bluemle, L. W., Jr., Trans. Amer. Soc. Artif. Int. Organs, XIV, 99–108 (1968).

    Google Scholar 

  26. Henderson, L. W., Besarab, A., Michaels, A. S., and Bluemle, L. W., Jr., Trans. Amer. Soc. Artif. Int. Organs, XIII, 216 (1967).

    Google Scholar 

  27. Most of the work reported here was conducted by Amicon Corporation in cooperation with the Hospital of the University of Pennsylvania under support from the National Institute of Arthritis and Metabolic Diseases, Contract No. PH43-6645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Blatt, W.F., Dravid, A., Michaels, A.S., Nelsen, L. (1970). Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques. In: Flinn, J.E. (eds) Membrane Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1851-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1851-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1853-8

  • Online ISBN: 978-1-4684-1851-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics