Skip to main content

Theoretical Consideration of the Double Layer

  • Chapter
Electrosorption

Abstract

In order to represent the electrochemical double layer at a plane interface, one assumes generally that the dielectric behavior is distinctly different in two regions, as illustrated in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parsons, Modern Aspects of Electrochem., Vol. 1, Bockris, ed., Butterworth, London (1954).

    Google Scholar 

  2. Smythe, Static and Dynamic Electricity, McGraw Hill Book Company, New York (1950).

    Google Scholar 

  3. Sneddon, Fourier Transforms, McGraw Hill Book Company, New York (1951).

    Google Scholar 

  4. Buff and Stillinger, Jr., J. Chem. Phys. 39, 1911 (1963).

    Article  Google Scholar 

  5. Krylov and Levich, Z. Fiz. Khim. 37, 106 (1963).

    Google Scholar 

  6. Ershler, Z. Fiz. Khim. 20, 679 (1946).

    CAS  Google Scholar 

  7. Prigogine, Mazur, and Defay, J. Chim. Phys. 50, 146 (1953).

    CAS  Google Scholar 

  8. Sanfeld, Steinchen-Sanfeld, and Defay, J. Chim. Phys. 58, 132 (1962).

    Google Scholar 

  9. Van de Berg, Ph.D. Dissertation, Free University of Brussels, Belgium (1964).

    Google Scholar 

  10. Sanfeld, Steinchen-Sanfeld, Hurwitz, and Defay, J. Chim. Phys. 58, 139 (1962).

    Google Scholar 

  11. Sanfeld, Bull. Classe Sci. Acad. Roy. Belg. 3, 339 (1964).

    Google Scholar 

  12. Hurwitz, Sanfeld, and Steinchen-Sanfeld, Electrochim. Acta 9, 929 (1964).

    Article  CAS  Google Scholar 

  13. Brown, Am. J. Phys. 19, 290 (1951).

    Article  Google Scholar 

  14. Owen, Miller, Milner, and Cogan, J. Phys. Chem. 65, 2065 (1961).

    Article  CAS  Google Scholar 

  15. Kirkwood, J. Chem. Phys. 7, 911 (1939).

    Article  CAS  Google Scholar 

  16. Lange, Z. Elektrochem. 56, 94 (1952).

    CAS  Google Scholar 

  17. Defay and Mazur, Bull. Soc. Chim. Belg. 63, 562 (1954).

    Article  Google Scholar 

  18. de Groot and Tolhoek, Proc. Komink. Ned. Akad. B54, 1 (1951).

    Google Scholar 

  19. Sanfeld, Thesis, Free University of Brussels, Belgium (1964).

    Google Scholar 

  20. Lange and Koenig, Handb. Experiment. Physik XII, 1933, Ak. Verlag Leipzig.

    Google Scholar 

  21. Gouy, J. Phys. 9, 457 (1910).

    CAS  Google Scholar 

  22. Chapman, Phil. Mag. 25, 475 (1913).

    Google Scholar 

  23. Helmholtz, Ann. Physik. 7, 337 (1879).

    Google Scholar 

  24. Debye and Hückel, Phys. Z. 24, 185 (1923).

    Google Scholar 

  25. Onsager, Phys. Z. 28, 277 (1927); Chem. Rev. 13, 73 (1933). Kirkwood, J. Chem. Phys. 2, 767 (1934). Frank and Thomson, J. Chem. Phys. 31, 1086 (1959).

    Google Scholar 

  26. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press, New York (1952).

    Google Scholar 

  27. Kirkwood and Poirier, J. Phys. Chem. 58, 591 (1954).

    Article  Google Scholar 

  28. Mayer, J. Chem. Phys. 18, 1426 (1950).

    Article  CAS  Google Scholar 

  29. Grimley and Mott, Discussions Faraday Soc. 43, 3 (1947).

    Article  Google Scholar 

  30. Eigen and Wicke, Z. Elektrochem. 55, 354 (1951).

    Google Scholar 

  31. Eigen and Wicke, Z. Elektrochem. 56, 836 (1952).

    Google Scholar 

  32. Freise, Z. Elektrochem. 56, 836 (1952).

    Google Scholar 

  33. Hückel and Kraft, Z. Phys. Chem. (N.F.) 3, 135 (1955).

    Article  Google Scholar 

  34. Brodowsky and Strelow, Z. Elektrochem. 63, 262 (1959).

    Google Scholar 

  35. Grahame, J. Chem. Phys. 18, 903 (1950).

    Article  CAS  Google Scholar 

  36. Conway, Bockris, and Ammar, Trans. Faraday Soc. 47, 756 (1951).

    Article  CAS  Google Scholar 

  37. Bikerman, Phil. Mag. 33, 884 (1942).

    Google Scholar 

  38. Spaarnay, Rec. Tray. Chim. 77, 382 (1958).

    Google Scholar 

  39. Grahame, Chem. Rev. 41, 441 (1947).

    Article  CAS  Google Scholar 

  40. Frumkin, Advances in Electrochemistry,Vols. 1 and 3, P. Delahay, ed., Inter-science, New York (1961 and 1963).

    Google Scholar 

  41. Gierst, These d’Agregation, Free University of Brussels; Belgium (1958).

    Google Scholar 

  42. Hill, Statistical Mechanics, McGraw—Hill Book Company, New York (1956).

    Google Scholar 

  43. Friedman, Ionic Solution Theory, Interscience, New York (1962).

    Google Scholar 

  44. Stillinger and Buff, J. Chem. Phys. 37, 1 (1962).

    Article  Google Scholar 

  45. Stillinger and Kirkwood, J. Chem. Phys. 33, 1282 (1960).

    Article  Google Scholar 

  46. Hasted, Ritson, and Collie, J. Chem. Phys. 16, 1 (1948).

    Article  CAS  Google Scholar 

  47. Booth, J. Chem. Phys. 19, 391 (1951).

    Article  CAS  Google Scholar 

  48. Barlow and MacDonald, J. Chem. Phys. 36, 3062 (1962).

    Article  Google Scholar 

  49. Malsch, Phys. Z. 29 770 (1928); 30 837 (1929).

    Google Scholar 

  50. Hückel, Phys. Z. 26, 93 (1925).

    Google Scholar 

  51. Sack, Phys. Z. 27 206 (1926); 28 199 (1927).

    Google Scholar 

  52. Verwey, Rec. Tray. Chim. 61, 127 (1942).

    Article  CAS  Google Scholar 

  53. Ackerman, Discussions Faraday Soc. 24, 80 (1957); Z. Phys. Chem. 27, 253 (1961).

    Google Scholar 

  54. Hasted and Roderick, J. Chem. Phys. 29, 17 (1958).

    Article  Google Scholar 

  55. Harned and Owen, The Physical Chemistry of Electrolytic Solution, 3rd ed., Reinhold, New York (1958).

    Google Scholar 

  56. Williams Proc. Phys. Soc. A66, 372 (1953).

    Google Scholar 

  57. Hill,J. Phys. Chem. 548 61 (1957).

    Google Scholar 

  58. Stern, Z. Elektrochem. 30 508 (1924).

    Google Scholar 

  59. Parsons, Advances in Electrochemistry,. Vol. 1, Delahay, ed., Interscience, New York (1961).

    Google Scholar 

  60. Delahay, Double Layer and Electrode Kinetics, Interscience, New York (1965).

    Google Scholar 

  61. Esin and Markov, Acta Physicochim. 10353 (1939).

    Google Scholar 

  62. de Boer, Electron Emission and Adsorption Phenomena, Cambridge University Press, London (1935).

    Google Scholar 

  63. Langmuir, J. Am. Chem. Soc. 54 1252, 2798 (1932).

    Google Scholar 

  64. Frumkin,Uspekhi Khim. 4, 938 (1935).

    Google Scholar 

  65. Esin and V. Shikhov,Z. Fiz. Khim. 17, 236 (1943).

    Google Scholar 

  66. lofa and Frumkin, Z. Fiz. Khim. 18 268 (1944).

    Google Scholar 

  67. Levich, Kiryanov, and Krylov Dokl. Akad. Nauk. Uz. SSR 135 1425 (1960).

    Google Scholar 

  68. Barlow, Jr., and MacDonald, J. Chem. Phys. 40 1535 (1964); 43, 2575 (1965).

    Google Scholar 

  69. Levine, Bell, and Calvert, Can. J. Chem. 40 518 (1962).

    Google Scholar 

  70. Grahame,Z. Elektrochem. 62, 264 (1958).

    Google Scholar 

  71. Bockris, Devanathan, and Müller, Proc. Roy. Soc. (London) A274, 55 (1963).

    Article  CAS  Google Scholar 

  72. Wroblowa, Kovac, and Bockris, Trans. Faraday Soc. 61, 1523 (1965).

    Article  CAS  Google Scholar 

  73. Barlow, Jr., and MacDonald, J. Chem. Phys. 39, 412 (1963).

    Google Scholar 

  74. Rampolla, Miller, and Smyth, J. Chem. Phys. 30, 566 (1959).

    CAS  Google Scholar 

  75. Sachs and Dexter, J. Appl. Phys. 21, 1304 (1950).

    Google Scholar 

  76. Cutler and Gibbons, Phys. Rev. 111, 394 (1958).

    Article  Google Scholar 

  77. Helfand, Frisch, and Lebowitz, J. Chem. Phys. 34, 1037 (1961).

    CAS  Google Scholar 

  78. Ree and Hoover, J. Chem. Phys. 40, 939 (1964).

    Google Scholar 

  79. Parsons, J. Electroanal. Chem. 7, 136 (1964).

    Article  CAS  Google Scholar 

  80. Wertheim, Phys. Rev. Letters 8, 321 (1963); J. Math. Phys. 5, 643 (1964).

    Article  Google Scholar 

  81. Throop and Bearman, J. Chem. Phys. 42, 2408 (1965).

    Google Scholar 

  82. Krylov, Electrochem. Acta 9, 1247 (1964).

    CAS  Google Scholar 

  83. Mignolet, Bull. Soc. Roy. Sci. (Liege) 23, 422 (1954).

    Google Scholar 

  84. Levine, Mingins, and Bell, Can. J. Chem. 43, 2834 (1965).

    CAS  Google Scholar 

  85. Levine, Mingins, and Bell, Can. J. Chem. 43, 2834 (1965).

    CAS  Google Scholar 

  86. Toppings, Proc. Roy. Soc. (London) A114, 67 (1927).

    Google Scholar 

  87. MacDonald and Barlow, Jr., Can. J. Chem. 43, 2985 (1965).

    Google Scholar 

  88. Bell, Levine, and Mingins, IV International Congress on Surface Activity, Brussels, September 1964.

    Google Scholar 

  89. MacDonald,J. Chem. Phys. 22, 1857 (1954).

    Google Scholar 

  90. Bell and Levine, Chemical Physics of Ionic Solutions, Conway and Barradas, eds., Wiley, New York (1966).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Plenum Press

About this chapter

Cite this chapter

Hurwitz, H.D. (1967). Theoretical Consideration of the Double Layer. In: Gileadi, E. (eds) Electrosorption. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1731-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1731-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1733-3

  • Online ISBN: 978-1-4684-1731-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics