Chronobiology (Circadian Rhythms)



Our earth is spinning, making a complete turn in 24 h. If the axis of this rotation were in the plane of the sun’s rays, half the earth would always be in darkness, half in light. Fortunately for us, the earth does not spin in this manner. Instead, its axis of rotation is roughly perpendicular to the sun’s rays, so that most of the surface of the earth is alternately illuminated and in shadow. All organisms have evolved in this changing illumination, which we know as day and night. It is not surprising, then, that they have adapted to this situation. For example, some animals are active only during the day, while others are nocturnal. Perhaps only the bacteria disregard the periodic quality of natural illumination.


Circadian Rhythm Light Pulse Circadian Clock Action Spectrum Biological Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Aschoff (ed.), Circadian Clocks ,North-Holland, Amsterdam (1965).Google Scholar
  2. 2.
    F. A. Brown, Jr., J. W. Hastings, and J. D. Palmer, The Biological Clock: Two Views ,Academic Press, New York (1970).Google Scholar
  3. 3.
    E. Bünning, The Physiological Clock ,3rd ed., Springer-Verlag, New York (1973).Google Scholar
  4. 4.
    Proc. Int. Symp. Circadian Rhythmicity, Wageningen, 1971 ,Centre for Agricultural Publication and Documentation, Wageningen, The Netherlands (1972).Google Scholar
  5. 5.
    A. Chovnick (ed.), Biological clocks, Cold Spring Harbor Symp. Quant. Biol. 25 (1960).Google Scholar
  6. 6.
    M. Menaker (ed.), Biochronometry ,National Academy of Science, Washington, D.C. (1971).Google Scholar
  7. 7.
    J. D. Palmer, Biological Clocks in Marine Organisms ,Wiley-Interscience, New York (1974).Google Scholar
  8. 8.
    B. M. Sweeney, Rhythmic Phenomena in Plants ,Academic Press, London (1969).Google Scholar
  9. 9.
    R. B. Withrow (ed.), Photoperiodism and Related Phenomena in Plants and Animals ,Publication No. 55, AAAS, Washington, D.C. (1959).Google Scholar
  10. 10.
    R. Wever, Internal phase angle differences in human circadian rhythms: Reasons for alteration and measurement problems, Int. J. Chronobiol. 1, 371–390 (1973).Google Scholar
  11. 11.
    J. D. Palmer, An Introduction to Biological Rhythms ,Academic Press New York (1976).Google Scholar
  12. 12.
    V. G. Bruce, Mutants of the biological clock in Chlamydomonas reinhardi, Genetics 70, 537–548 (1972).Google Scholar
  13. 13.
    R. J. Konopka and S. Benzer, Clock mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 68, 2112–2116 (1971).CrossRefGoogle Scholar
  14. 14.
    J. F. Feldman and N. M. Waser, New mutations affecting circadian rhythmicity in Neurospora ,in: Biochronometry (M. Menaker, ed.), pp. 652–656, National Academy of Science, Washington, D.C. (1971).Google Scholar
  15. 15.
    J. W. Hastings and B. M. Sweeney, The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax ployedra, J. Gen. Physiol. 43, 697–706 (1960).CrossRefGoogle Scholar
  16. 16.
    R. Zimmer, Phasenverschiebung und andere Störlichtwirkungen auf die endogen tagesperiodischen Blütenblattbewegungen von Kalanchoë blossfeldiana, Planta 58, 283–300 (1962).CrossRefGoogle Scholar
  17. 17.
    C. S. Pittendrigh, Circadian rhythms and the circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol. 25, 159–184 (1960).CrossRefGoogle Scholar
  18. 18.
    M. L. Sargent and W. R. Briggs, The effects of light on a circadian rhythm of conidiation in Neurospora, Plant Physiol. 42, 1504–1510(1967).CrossRefGoogle Scholar
  19. 19.
    R. Halaban, Effects of light quality on the circadian rhythm on leaf movement of a short-day plant, Plant Physiol. 44, 973–977 (1969).CrossRefGoogle Scholar
  20. 20.
    A. T. Winfree, Integrated view of resetting of circadian clock, J. Theor. Biol. 28, 327–374 (1970).CrossRefGoogle Scholar
  21. 21.
    A. T. Winfree, On the photosensitivity of the circadian time-sense in Drosophila pseudoobscura, J. Theor. Biol. 35, 159–189 (1972).CrossRefGoogle Scholar
  22. 22.
    W. Englemann, H. G. Karlsson, and A. Johnsson, Phase shifts in the Kalanchoe petal rhythm, caused by light pulses of different duration, Int. J. Chronobiol. 1, 147–156 (1973).Google Scholar
  23. 23.
    K. D. Frank and W. F. Zimmerman, Action spectra for phase shifts of a circadian rhythm in Drosophila, Science 163, 688–689 (1969).CrossRefGoogle Scholar
  24. 24.
    C. S. Pittendrigh, J. H. Eichhorn, D. H. Minis, and V. G. Bruce, Circadian systems. VI. Photoperiodic time measurement in Pectinophora gossypiella, Proc. Natl. Acad. Sci. USA 66, 758–764 (1970).CrossRefGoogle Scholar
  25. 25.
    M. B. Wilkins, An endogenous rhythm in the rate of CO2 output of Bryophyllum. II. The effects of light and darkness on the phase and period of the rhythm, J. Exp. Botany 11,269–288 (1960).CrossRefGoogle Scholar
  26. 26.
    E. Bünning and I. Moser, Response-Kurven bei der circadian Rhythmik von Phaseolus, Planta 69, 101–110(1966).CrossRefGoogle Scholar
  27. 27.
    W. F. Zimmerman and T. H. Goldsmith, Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila, Science 171, 1167–1169 (1971).CrossRefGoogle Scholar
  28. 28.
    B. M. Sweeney, Resetting the biological clock in Gonyaulax with ultraviolet light, Plant Physiol. 38, 704–708 (1963).CrossRefGoogle Scholar
  29. 29.
    C. F. Ehret, Action spectra and nucleic acid metabolism in circadian rhythms at the cellular level, Cold Spring Harbor Symp. Quant. Biol. 25, 149–158 (1960).CrossRefGoogle Scholar
  30. 30.
    V. G. Bruce and D. H. Minis, Circadian clock action spectrum in a photoperiodic moth, Science 163, 583–585 (1969).CrossRefGoogle Scholar
  31. 31.
    V. Mufioz and W. L. Butler, Photoreceptor pigment for blue light in Neurospora crassa, Plant Physiol. 55, 421–426 (1975).CrossRefGoogle Scholar
  32. 32.
    J. Aschoff, Exogenous and endogenous components in circadian rhythms, Cold Spring Harbor Symp. Quant. Biol. 25, 11–28 (1960).CrossRefGoogle Scholar
  33. 33.
    J. Aschoff, Response curves in circadian periodicity, in: Circadian Clocks (J. Aschoff, ed.), pp. 95–111, North-Holland, Amsterdam (1965).Google Scholar
  34. 34.
    Biology Data Book ,2nd ed.. Vol. 2, pp. 1016–1039, Federation of American Societies for Experimental Biology, Bethesda, Md. (1973).Google Scholar
  35. 35.
    F. A. Brown, Jr., The “clocks” timing biological rhythms, Am. Sci. 60, 756–766 (1972).Google Scholar
  36. 36.
    D. Njus, F. M. Sulzman, and J. W. Hastings, Membrane model for the circadian clock, Nature 248, 116–120(1974).CrossRefGoogle Scholar
  37. 37.
    B. M. Sweeney, A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes, Int. J. Chronobiol. 2, 25–33 (1974).Google Scholar
  38. 38.
    H. D. W. Saddler, The membrane potential of Acetabularia mediterranea, J. Gen. Physiol. 55, 802–821 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations