A generalized view of photosensitization is presented in Section 3.8. as an introduction to the subject; the treatment here emphasizes photosensitization in biological systems. Most cells are rather insensitive to direct effects of visible light, since their major organic constituents do not absorb appreciably in this wavelength range. In the presence of an appropriate photosensitizer, however, organisms, cells, and many types of biologically important molecules can be damaged and destroyed by visible light. Cells are probably killed by selective photochemical effects on certain cell organelles; damage to the organelle results from selective alteration of macromolecules in the organelle, and alteration of the macromolecule results from selective damage to certain of its subunits. Thus, the study of photosensitization in biology ranges from an examination of the photochemistry of excited sensitizer molecules to the photosensitized killing of mammals.


Methylene Blue Singlet Oxygen Rose Bengal Photodynamic Action Photosensitization Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. F. Blum, Photodynamic Action and Diseases Caused by Light ,Reinhold, New York (1941). (Reprinted in 1964 with an updated appendix by Hafner Publ., New York).Google Scholar
  2. 2.
    N. T. Clare, Photodynamic action and its pathological effects, in: Radiation Biology (A. Hollaender. ed.), pp. 693–723, McGraw-Hill, New York (1956).Google Scholar
  3. 3.
    L. Santamaria and G. Prino, The photodynamic substances and their mechanism of action, in:1.Research Progress in Organic, Biological and Medicinal Chemistry (U. Gallo and L. Santamaria, eds.), Vol. 1, pp. 260–336, Società Editoriale Farmaceutica, Milan (1964).Google Scholar
  4. 4.
    J. D. Spikes, Photodynamic action, Photophysiology 3, 33–64 (1968).Google Scholar
  5. 5.
    K. C. Smith and P. C. Hanawalt, Molecular Photobiology (Inactivation and Recovery), Chapter 9, Photodynamic action, pp. 179–191, Academic Press, New York (1969).Google Scholar
  6. 6.
    J. D. Spikes and R. Livingston, The molecular biology of photodynamic action: Sensitized photoautoxidations in biological systems, Adv. Radiat. Biol. 3, 29–121 (1969).Google Scholar
  7. 7.
    U. Gallo and L. Santamaria (eds.), Research Progress in Organic, Biological and Medicinal Chemistry ,Vol. III, Parts 1 and 2, North-Holland, Amsterdam (1972). [This volume reports the proceedings of a NATO-sponsored conference on photosensitization phenomena.]Google Scholar
  8. 8.
    J. D. Spikes, Porphyrins and related compounds as photodynamic sensitizers, Ann. N.Y. Acad. Sci. 244, 496–508 (1975).CrossRefGoogle Scholar
  9. 9.
    C. S. Foote, Photosensitized oxidation and singlet oxygen: consequences in biological systems, in: Free Radicals in Biology (W. A. Pryor, ed.), Vol. II, pp. 85–133, Academic Press, New York (1976).Google Scholar
  10. 10.
    J. Bourdon and B. Schnuriger, Photosensitization of organic solids, in: Physics and Chemistry of the Organic Solid State (D. Fox, M. M. Labes and A. Weissberger, eds.) Vol. 3, pp. 59–131, Interscience, New York (1967).Google Scholar
  11. 11.
    C. S. Foote, Mechanisms of photosensitized oxidation, Science 162, 963–970 (1968).CrossRefGoogle Scholar
  12. 12.
    L. I. Grossweiner, Molecular mechanisms in photodynamic action, Photochem. Photobiol. 10, 183–191 (1969).CrossRefGoogle Scholar
  13. 13.
    T. Wilson and J. W. Hastings, Chemical and biological aspects of singlet excited molecular oxygen, Photophysiology 5, 50–95 (1970).Google Scholar
  14. 14.
    I. R. Politzer, G. W. Griffin, and J. L. Laseter, Singlet oxygen and biological systems, Chem. Biol. Interact. 3, 73–93 (1971).CrossRefGoogle Scholar
  15. 15.
    J. D. Spikes and F. Rizzuto, Photodynamic oxidation not involving singlet oxygen, in: Progress in Photobiology, Proceedings of the Sixth International Congress on Photobiology ,Bochum, Germany, 1972 (G. O. Schenck, ed.), 009, Deutsche Gesellschaft für Lichtforschung e.v., Frankfurt (1974).Google Scholar
  16. 16.
    R. Nilsson and D. R. Kearns, A remarkable deuterium effect on the rate of photosensitized oxidation of alcohol dehydrogenase and trypsin, Photochem. Photobiol. 17, 65–68 (1973).CrossRefGoogle Scholar
  17. 17.
    H. J. Conn, Biological Stains ,7th ed., Williams and Wilkins, Baltimore, Md. (1961).Google Scholar
  18. 18.
    J. D. Spikes and M. L. MacKnight, The dye-sensitized photooxidation of biological macromolecules, in: Photochemistry of Macromolecules (R. F. Reinisch, ed.), pp. 67–83, Plenum Press, New York (1970).Google Scholar
  19. 19.
    K. Davies, G. A. Gee, J. McKellar, and G. O. Phillips, Primary photochemical processes of two phototendering dyes on cellulose substrates, Chem. Ind. 1973 ,431–432.Google Scholar
  20. 20.
    F. H. Doleiden, S. R. Fahrenholtz, A. A. Lamola, and A. M. Trozzolo, Reactivity of cholesterol and some fatty acids toward singlet oxygen, Photochem. Photobiol. 20, 519–521 (1974).CrossRefGoogle Scholar
  21. 21.
    J. D. Spikes and M. L. MacKnight, Dye-sensitized photooxidation of proteins, Ann. NY Acad. Sci. 171 ,149–162 (1970).CrossRefGoogle Scholar
  22. 22.
    G. Jori, Photosensitized reactions of amino acids and proteins (yearly review), Photochem. Photobiol. 21, 463–467 (1975).CrossRefGoogle Scholar
  23. 23.
    E. -R. Lochmann and A. Micheler, Binding of organic dyes to nucleic acids and the photodynamic effect, in: Physico-chemical Properties of Nucleic Acids ,(J. Duchesne, ed.), Vol. I, pp. 223–267, Academic Press, London (1973).Google Scholar
  24. 24.
    A. Kornhauser, N. I. Krinsky, P. -K. C. Huang, and D. C. Clagett, A comparison of photodynamic oxidation and radiofrequency-discharge generated 1O2 oxidation of guanosine, Photochem. Photobiol. 18, 63–69 (1973).CrossRefGoogle Scholar
  25. 25.
    K. Uehara and T. Hayakawa, Photooxidation of adenine and its nucleotides in the presence of riboflavin. IV. Photochemical reaction and products of NAD, J. Biochem. 71,401–415 (1972).Google Scholar
  26. 26.
    K. C. Smith, The radiation-induced addition of protein and other molecules to nucleic acids, in: Photochemistry and Photobiology of Nucleic Acids (S. Y. Wang, ed.), Vol. 2, pp. 187–218, Academic Press, New York (1976).Google Scholar
  27. 27.
    C. Wallis and J. L. Melnick, Photodynamic inactivation of animal viruses: A review, Photochem. Photobiol. 4, 159–170.Google Scholar
  28. 28.
    C. W. Hiatt, Methods for photoinactivation of viruses, in Concepts in Radiation Cell Biology (G. L. Whitson, ed.), pp. 57–89, Academic Press, New York (1972).Google Scholar
  29. 29.
    A. Jaffe-Brachet, N. Henry and M. Errera, The photodynamic inactivation of : bacteriophage particles in the presence of methylated proflavine, Mutat. Res. 12 ,9–14 (1971).CrossRefGoogle Scholar
  30. 30.
    W. Harm, Dark repair of acridine dye-sensitized photoeffects in E. coli cells and bacteriophages, Biochem. Biophys. Res. Commun. 32, 350–358 (1968).CrossRefGoogle Scholar
  31. 31.
    T. D. Felber, E. B. Smith, J. M. Knox, C. Wallis, and J. L. Melnick, Photodynamic inactivation of Herpes simplex, JAMA 223, 289–292 (1973).CrossRefGoogle Scholar
  32. 32.
    A. C. Allison, I. A. Magnus, and M. R. Young, Role of lysosomes and of cell membranes in photosensitization, Nature 209, 874–878 (1966).CrossRefGoogle Scholar
  33. 33.
    D. S. Williams and T. F. Slater, Photosensitization of isolated lysosomes, Biochem. Soc, Trans. 1, 200–202 (1973).Google Scholar
  34. 34.
    R. T. Garvin, G. R. Julian, and S. J. Rogers, Dye-sensitized photooxidation of the Escherichia coli ribosome, Science 164, 583–584 (1969).CrossRefGoogle Scholar
  35. 35.
    I. L. Cameron, A. L. Burton, and C. W. Hiatt, Photodynamic action of laser light on cells, in: Concepts in Radiation Cell Biology (G. L. Whitson, ed.), pp. 245–258, Academic Press, New York (1972).Google Scholar
  36. 36.
    N. I. Krinsky, The protective function of carotenoid pigments, Photophysiology 3, 123–195 (1968).Google Scholar
  37. 37.
    N.I. Krinsky, Membrane photochemistry and photobiology, Photochem. Photobiol. 20, 532–535 (1974).CrossRefGoogle Scholar
  38. 38.
    J. Das, B. Bagchi, and U. Chaudhuri, Liquid holding recovery of photodynamic damage in E. coli, Photochem. Photobiol. 19, 317–319 (1974).CrossRefGoogle Scholar
  39. 39.
    A. A. Lamola, T. Yamane, and A. M. Trozzolo, Cholesterol hydroperoxide formation in red cell membranes and photohemolysis in erythropoietic protoporphyria, Science 179, 1131–1133 (1973).CrossRefGoogle Scholar
  40. 40.
    J. Pooler, Photodynamic alteration of lobster giant axons in calcium-free and calcium-rich media, J. Membrane Biol. 12, 339–348 (1973).CrossRefGoogle Scholar
  41. 41.
    F. P. Imray and D. G. MacPhee, Induction of base-pair substitution and frameshift mutations in wild-type and repair-deficient strains of Salmonella typhimurium by the photodynamic action of methylene blue, Mutat. Res. 27, 299–306 (1975).CrossRefGoogle Scholar
  42. 42.
    L. C. Harber and R. L. Baer, Pathogenic mechanisms of drug-induced photosensitivity, J. Invest. Dermatol. 58, 327–342 (1972).CrossRefGoogle Scholar
  43. 43.
    W. J. Runge, Photosensitivity in porphyria, Photophysiology 7, 149–162 (1972).Google Scholar
  44. 44.
    M. M. Mathews-Roth, M. A. Pathak, T. B. Fitzpatrick, L. C. Harber, and E. H. Kass, Betacarotene as a photoprotective agent in erythropoietic protoporphyria, N. Engl. J. Med. 282, 1231–1234 (1970).CrossRefGoogle Scholar
  45. 45.
    D. P. Bremner, Hepatogenous photosensitization. Induction and study in guinea pigs, J. Comp. Pathol. 84 ,555–568(1974).CrossRefGoogle Scholar
  46. 46.
    T. P. Yoho, J. E. Weaver, and L. Butler, Photodynamic action in insects. I. Levels of mortality in dye-fed light-exposed house flies, Environ. Entomol. 2, 1092–1096 (1973).Google Scholar
  47. 47.
    A. C. Giese, Photosensitization by natural pigments, Photophysiology 6, 77–129 (1971).Google Scholar
  48. 48.
    A. Eisenstark, Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells, Adv. Genet. 16, 167–198 (1971).CrossRefGoogle Scholar
  49. 49.
    B. L. Epel, Inhibition of growth and respiration by visible and near-visible light, Photophysiology 8, 209–229(1973).Google Scholar
  50. 50.
    H. B. Lamberts, Natural photodynamic sensitivity in Tubifex ,in: Progess in Photobiology (B. Chr. Christensen and B. Buchman, eds.), pp. 431–432, Elsevier, Amsterdam (1961).Google Scholar
  51. 51.
    L. R. Barran, J. Y. Daoust, J. L. Labelle, W. G. Martin, and H. Schneider, Differential effects of visible light on active transport in E. coli, Biochem. Biophys. Res. Commun. 56, 522–528 (1974).CrossRefGoogle Scholar
  52. 52.
    A. U. Khan and M. Kasha, An optical-residue singlet-oxygen theory of photocarcinogenicity, Ann. NY Acad. Sci. 171, 24–33 (1970).CrossRefGoogle Scholar
  53. 53.
    S. Granelli, I. Diamond, A. McDonough, C. Wilson, and S. Nielsen, Photochemotherapy of glioma cells by visible light and hematoporphyrin, Cancer Res. 35, 2567–2570 (1975).Google Scholar
  54. 54.
    T. Dougherty, G. Grindey, R. Fiel, K. Weishaupt, and D. Boyle, Photoradiation therapy II: Cure of animal tumors with hematoporphyrin and light, J. Natl. Cancer Inst. 55, 115–121 (1975).Google Scholar
  55. 55.
    A. H. Clements, R. H. Van Den Engh, D. J. Frost, K. Hoogenhout, and J. R. Nooi, Participation of singlet oxygen in photosensitized oxidation of 1,4-dienoic systems and photooxidation of soybean oil, J. Am. Oil Chem. Soc. 50, 325–330 (1973).CrossRefGoogle Scholar
  56. 56.
    A. W. M. Sweetsur and J. C. D. White, Studies on the heat stability of milk protein: II. Effects of exposing milk to light, J. Dairy Res. 42, 57–71 (1975).CrossRefGoogle Scholar
  57. 57.
    R. Radtke, Storage behavior of potato chips exposed to light and in dark. I. Analysis of alterations of frying oil caused by light (in German), Fette Seifen Anstrichmittel 76, 540–546 (1974).CrossRefGoogle Scholar
  58. 58.
    H. W. -S. Chan, Artificial food colours and the photooxidation of unsaturated fatty acid methyl esters: the role of erythrosine, Chem. Ind. 1975 612–614.Google Scholar
  59. 59.
    Ph. P. Van Hasselt, Photooxidation of unsaturated lipids in Cucumis leaf discs during chilling, Acta Bot. Neer. 23, 159–169 (1974).Google Scholar
  60. 60.
    L. Musajo and G. Rodighiero, Mode of photosensitizing action of furocoumarins, Photophysiology 7, 115–147 (1972).Google Scholar
  61. 61.
    J. A. Parrish, Methoxalem-UV-A therapy of psoriasis, J. Invest. Dermatol. 67, 669–671 (1976).CrossRefGoogle Scholar
  62. 62.
    R. E. Hakim, A. C. Griffin, and J. M. Knox, Erythema and tumor formation in methoxysalentreated mice exposed to fluorescent light, Arch. Dermatol. 82, 572–577 (1960).CrossRefGoogle Scholar
  63. 63.
    E. Rabinowitch and R. L. Bedford, Spectroscopy and Photochemistry of Uranyl Compounds ,Macmillan, New York (1964).Google Scholar
  64. 64.
    I. J. ;ernohorský and G. M. Blackburn, Photodynamic effects of Fe3+ upon bases of nucleic acids, in: Radiation Biophysics, Free Radicals, Proc. First Eur. Biophys. Congr. (E. Broda, A. Locker, and H. Springer-Lederer, eds.), Vol. 2, pp. 29–31, Verlag der Wiener Medizinischen Adkademie, Vienna (1971).Google Scholar
  65. 65.
    B. Singer and H. Fraenkel Conrat, Effects of illumination in the presence of iron salts on ribonucleic acid and model compounds, Biochemistry 4, 226–233 (1965).CrossRefGoogle Scholar
  66. 66.
    M. L. Meistrich and A. A. Lamola, Triplet-state sensitization of thymine photodimerization in bacteriophage T4, J. Mol. Biol. 66, 83–95 (1972).CrossRefGoogle Scholar
  67. 67.
    M. Charlier and C. Hélène, Photosensitized splitting of pyrimidine dimers in DNA by indole derivatives and tryptophan-containing peptides, Photochem. Photobiol. 21, 31–37 (1975).CrossRefGoogle Scholar
  68. 68.
    G. Jori, Photosensitized oxidation of biomolecules as a tool for elucidating three-dimensional structure, Anais Acad. Brasil. Cien. 45, 33–44 (1973).Google Scholar
  69. 69.
    G. Jori, M. Folin, G. Gennari, G. Galiazzo, and O. Buso, Photooxidation of lanthanide ionlysozyme complexes. A new approach to the evaluation of intramolecular distances in proteins. Photochem. Photobiol. 19, 419–433 (1974).CrossRefGoogle Scholar
  70. 70.
    M. W. Berns, Biological Microirradiation: Classical and Laser Sources ,Prentice-Hall, Engle-wood Cliffs, N.J. (1974).Google Scholar
  71. 71.
    E. Clausen, Simple and fast assay method for riboflavine, Lab. Pract. 24, 161–162 (1975).Google Scholar
  72. 72.
    V. R. White and J. M. Fitzgerald, Dye-sensitized continuous photochemical analysis: Identification and relative importance of key experimental parameters, Anal. Chem. 47,903–908 (1975).CrossRefGoogle Scholar
  73. 73.
    R. Rabson and J. R. Plimmer, Photoalteration of pesticides: Summary of workshop, Science 180, 1204–1205 (1973).CrossRefGoogle Scholar
  74. 74.
    K. Eskins, B. L. Bucher and J. H. Sloneker, Sensitized photodegradation of cellulose and cellulosic wastes, Photochem. Photobiol. 18, 195–200 (1973).CrossRefGoogle Scholar
  75. 75.
    S. S. Epstein, M. Small, J. Koplan, N. Mantel, and S. H. Hutner, Photodynamic bioassay of benzo[a]pyrene with Paramecium caudatum, J. Natl. Cancer Inst. 31, 163–168 (1963).Google Scholar
  76. 76.
    W. S. Hoar, Some effects of radiation on cells. I. Photodynamic action, in: Experiments in Physiology and Biochemistry (G. A. Kerkut, ed.), Vol. 1, pp. 132–135, Academic Press, London and New York (1968).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations