Advertisement

Spectroscopy

Chapter

Abstract

Central to photochemistry is the principle, first stated by Grotthus and Draper in 1818, that only absorbed light can produce a chemical change. Thus, molecular photobiology is concerned with the sequence of molecular events that begins with the absorption of light by some part of what is considered to be the biological system, and terminates with some observed biological response. It is, therefore, not only reasonable but necessary to begin a course in photobiology with a treatment of the laws governing the absorption of light by molecules.

Keywords

Triplet State Vibrational Level Excited Electronic State Excited Singlet State Internal Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Jaffé and Milton Orchin, Theory and Applications of Ultraviolet Spectroscopy ,Wiley, New York (1962).Google Scholar
  2. 2.
    J. N. Murrell, The Theory of the Electronic Spectra of Organic Molecules ,Wiley, New York (1963).Google Scholar
  3. 3.
    W. West (ed.), Chemical applications of spectroscopy, in: Technique of Organic Chemistry (A. Weissberger, ed.), Vol. 9, Wiley-Interscience, New York (1956).Google Scholar
  4. 4.
    A. E. Gillam and E. S. Stern, Electronic Absorption Spectroscopy ,2nd ed., Arnold, London (1957).Google Scholar
  5. 5.
    W. G. Herkstroeter, Special methods in absorption spectrophotometry, in: Creation and Detection of the Excited State (A. A. Lamola, ed.), Vol. 1, Part A, pp. 1–51, Marcel Dekker, New York (1971).Google Scholar
  6. 6.
    J. D. Roberts, Notes on Molecular Orbital Calculations ,Benjamin, New York (1962).Google Scholar
  7. 7.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems ,Benjamin, New York (1966).Google Scholar
  8. 8.
    M. Kasha, Molecular photochemistry, in: Comparative Effects of Radiation (M. Burton, J. S. Kirby-Smith, and J. L. Magee, eds.), pp. 72–96, Wiley, New York (1960).Google Scholar
  9. 9.
    M. Kasha, The nature and significance of n;* transitions, in: Light and Life (W. D. McElroy and B. Glass, eds.), pp. 31–64, The Johns Hopkins University Press, Baltimore, Md. (1961).Google Scholar
  10. 10.
    R. B. Leighton, Principles of Modern Physics ,pp. 233–251, McGraw-Hill, New York (1959).Google Scholar
  11. 11.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State ,Prentice-Hall, Englewood Cliffs, N.J. (1969).Google Scholar
  12. 12.
    H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules ,Academic Press, New York (1967).Google Scholar
  13. 13.
    F. Dorr, Polarized Light in Spectroscopy and Photochemistry, in: Creation and Detection of the Excited State (A. A. Lamola, ed.), Vol. 1, Part A, pp. 53–122, Marcel Dekker, New York (1971).Google Scholar
  14. 14.
    Th. Förster, Fluoreszenz Organischen Verbindungen ,Vanderhoech und Ruprecht, Göttingen (1951).Google Scholar
  15. 15.
    I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules ,2nd ed., Academic Press, New York (1971).Google Scholar
  16. 16.
    R. S. Becker, Theory and Interpretation of Fluorescence and Phosphorescence ,Wiley-Interscience, New York (1969).Google Scholar
  17. 17.
    M. Kasha, Paths of molecular excitation, Radiat. Res. Suppl. 2, 243–275 (1960).CrossRefGoogle Scholar
  18. 18.
    R. M. Hochstrasser, Some principles governing the luminescence of organic molecules, in: Excited States of Proteins and Nucleic Acids (R. F. Steiner and I. Weinryb, eds.), pp. 1–30, Plenum Press, New York (1971).Google Scholar
  19. 19.
    J. Jortner, S. A. Rice, and R. M. Hochstrasser, Adv. Photochem. 7, 149–173 (1969).CrossRefGoogle Scholar
  20. 20.
    N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra ,Marcel Dekker, New York (1970).Google Scholar
  21. 21.
    J. W. Longworth, Luminescence spectroscopy, in: Creation and Detection of the Excited State (A. A. Lamola, ed.), Vol. 1, Part A, pp. 343–370, Marcel Dekker, New York (1971).Google Scholar
  22. 22.
    W. G. Herkstroeter, Flash photolysis, in: Physical Methods of Chemistry (A. Weissberger and B. W. Rossiter, eds.), Part 3B, pp. 521–576, Wiley-Interscience, New York (1972).Google Scholar
  23. 23.
    M. M. Malley, Lasers in spectroscopy and photochemistry, in: Creation and Detection of the Excited State (W. Ware, ed.), Vol. 2, pp. 99–148, Marcel Dekker, (1974).Google Scholar
  24. 24.
    A. A. Lamola, Electronic energy transfer in solution: Theory and applications, in: Technique of Organic Chemistry (P. A. Leermakers and A. Weissberger, eds.), Vol. 14, pp. 17–126, Wiley-Interscience, New York (1969).Google Scholar
  25. 25.
    R. F. Steiner and I. Weinryb (eds.), Excited States of Proteins and Nucleic Acids ,Plenum Press, New York (1971).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations