New Topics in Photobiology



The highlighting of new topics in photobiology, or of new advances in older subspecialties of photobiology, is meant to call to the attention of the reader those areas of photobiology which, in this author’s view, offer unusual opportunities for exciting research in the coming years. Additional examples are also given in the Conclusion sections of the preceding chapters.


Visible Light Action Spectrum Growth Delay Photoacoustic Spectroscopy Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Urbach (ed.), The Biologic Effects of Ultraviolet Radiation ,p. 363, Pergamon Press, N.Y. (1969).Google Scholar
  2. 2.
    R. C. Smith and J. E. Tyler. Transmission of solar radiation into natural waters, in: Photochemical and Photobiological Reviews (K. C. Smith, ed.), Vol. 1, pp. 117–155, Plenum Press, New York (1976).Google Scholar
  3. 3.
    M. Luckiesh, Applications of Germicidal, Erythemal and Infrared Energy ,Van Nostrand, New York (1946).Google Scholar
  4. 4.
    K. H. Norris and W. L. Butler, Techniques for obtaining absorption spectra on intact biological samples. IRE Trans. Bio-Med. Electron. 8, 153–157 (1961).CrossRefGoogle Scholar
  5. 5.
    D. R. Laub, D. J. Prolo, W. Whittlesey, and H. Buncke, Jr., Median cerebrofacial dysgenesis, Calif Med. 112, 19–21 (1970).Google Scholar
  6. 6.
    W. L. Butler, Absorption spectroscopy in vivo: Theory and application. Annu. Rev. Plant Physiol. 15, 451–470 (1964).CrossRefGoogle Scholar
  7. 7.
    K. H. Norris, Measuring and using light transmittance properties of plant materials, in: Electromagnetic Radiation in Agriculture ,pp. 64–66, Illuminating Engineering Society, New York (1965).Google Scholar
  8. 8.
    A. Rosencwaig, Photoacoustic spectroscopy-A new tool for investigation of solids, Anal. Chem. 47(6), 592A–604A (1975).CrossRefGoogle Scholar
  9. 9.
    E. S. Vesell and C. M. Long (co-chairman), Environmental and genetic factors affecting laboratory animals: Impact on biomedical research, Fed. Proc. 35, 1123–1165 (1976).Google Scholar
  10. 10.
    J. N. Ott, Health and Eight (The Effects of Natural and Artificial Light on Man and Other Living Things), Devin-Adair, Old Greenwich, Conn. (1973).Google Scholar
  11. 11.
    P. G. Natali and E. M. Tan, Immunological detection of thymidine photoproduct formation in vivo, Radiat. Res. 46, 506–518 (1971).CrossRefGoogle Scholar
  12. 12.
    C. J. Lucas, Immunological demonstration of the disappearance of pyrimidine dimers from nuclei of cultured human cells, Exp. Cell Res. 74, 480–486 (1972).CrossRefGoogle Scholar
  13. 13.
    E. M. Tan and R. B. Stoughton, Ultraviolet light-induced damage to desoxyribonucleic acid in human skin, J. Invest. Dermatol. 52, 537–542 (1969).CrossRefGoogle Scholar
  14. 14.
    E. M. Tan, R. G. Freeman, and R. B. Stoughton, Action spectrum of ultraviolet light-induced damage to nuclear DNA in vivo, J. Invest. Dermatol. 55, 439–443 (1970).CrossRefGoogle Scholar
  15. 15.
    E. Seaman, H. van Vunakis, and L. Levine, Serologic estimation of thymine dimers in the deoxyribonucleic acid of bacterial and mammalian cells following irradiation with ultraviolet light and postirradiation repair, J. Biol Chem. 247, 5709–5715 (1972).Google Scholar
  16. 16.
    M. L. Kripke and M. S. Fisher, Immunologic parameters of ultraviolet carcinogenesis, J. Natl. Cancer Inst. 57, 211–215 (1976).Google Scholar
  17. 17.
    D. H. Hug, D. Roth, and J. K. Hunter, Photoactivation of an enzyme and biological photoreception: An hypothesis, Physiol. Chem. Phys. 3, 353–360 (1971).Google Scholar
  18. 18.
    D. Roth and D. H. Hug, Photoactivation of urocanase in Pseudomonas putida: Action spectrum, Radiat. Res. 50, 94–104 (1972).CrossRefGoogle Scholar
  19. 19.
    D. H. Hug and D. Roth, Photoactivation of urocanase in Pseudomonas putida: Purification of inactive enzyme, Biochemistry 10, 1397–1402 (1971).CrossRefGoogle Scholar
  20. 20.
    J. F. Baugher and L. I. Grossweiner, Ultraviolet inactivation of papain, Photochem. Photohiol. 22, 163–167 (1975).CrossRefGoogle Scholar
  21. 21.
    H. S. Johnson, NADP-malate dehydrogenase: Photoactivation in leaves of plants with Calvin Cycle photosynthesis, Biochem. Biophys. Res. Commun. 43, 703–709 (1971).CrossRefGoogle Scholar
  22. 22.
    M. Weller, N. Virmaux, and P. Mandel, Light-stimulated phosophorylation of rhodopsin in the retina: The presence of a protein kinase that is specific for photobleached rhodopsin, Proc. Natl. Acad. Sci. USA 72, 381–385 (1975).CrossRefGoogle Scholar
  23. 23.
    H. Kaufman, S. M. Vratsanos, and B. F. Erlanger, Photoregulation of an enzymic process by means of a light-sensitive ligand, Science 162, 1487–1489 (1968).CrossRefGoogle Scholar
  24. 24.
    J. Bieth, N. Wassermann, S. M. Vratsanos, and B. F. Erlanger, Photoregulation of biological activity by photochromic reagents, IV. A model for diurnal variation of enzymic activity, Proc. Natl. Acad. Sci. USA 66, 850–854 (1970).CrossRefGoogle Scholar
  25. 25.
    S. Comorosan, The measurement process in biological systems: A new phenomenology, J. Theor. Biol. 51, 35–49 (1975).CrossRefGoogle Scholar
  26. 26.
    F. L. Gates, A study of the bactericidal action of ultraviolet light. III. The absorption of ultraviolet light by bacteria, J. Gen. Physiol. 14, 31–42 (1930).CrossRefGoogle Scholar
  27. 27.
    A. A. Lamola, M. Gueron, T. Yamane, J. Eisinger, and R. G. Shulman. Triplet state of DNA, J. Chem. Phys. 47, 2210–2217 (1967).CrossRefGoogle Scholar
  28. 28.
    R. M. Tyrrell, Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation, Photochem. Photobiol. 17, 69–73 (1973).CrossRefGoogle Scholar
  29. 29.
    R. B. Webb, Lethal and mutagenic effects of near-ultraviolet radiation, in: Photochemical and Photobiological Reviews ,Vol. 2, (K. C. Smith, ed.), pp. 169–261, Plenum Press, New York (1977).Google Scholar
  30. 30.
    H.-D. Menningmann and A. Wacker, Photoreactivation of Escherichia coli Bs-3 after inactivation by 313 nm radiation in the presence of acetone, Photochem. Photobiol. 11, 291–296 (1970).CrossRefGoogle Scholar
  31. 31.
    K. C. Smith (ed.), Aging, Carcinogenesis, and Radiation Biology (The Role of Nucleic Acid Addition Reactions), Plenum Press, New York (1976).Google Scholar
  32. 32.
    J. Jagger, Growth delay and photoprotection induced by near-ultraviolet light, Res. Prog. Org. Biol. Med. Chem. 3, 383–401 (1972).Google Scholar
  33. 33.
    R. B. Webb, Photodynamic lethality and mutagenesis in the absence of added sensitizers, Res. Prog. Org. Biol. Med. Chem. 3, 511–530 (1972).Google Scholar
  34. 34.
    T. V. Ramabhadran and J. Jagger, Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation, Proc. Natl. Acad. Sci. USA 73, 59–63 (1976).CrossRefGoogle Scholar
  35. 35.
    R. M. Tyrrell, R. D. Ley, and R. B. Webb, Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation, Photochem. Photobiol. 20, 395–398 (1974).CrossRefGoogle Scholar
  36. 36.
    J. P. McCormick, J. R. Fischer, J. P. Pachlatko, and A. Eisenstark, Characterization of a celllethal product from the photooxidation of tryptophan:hydrogen peroxide, Science 191, 468–469 (1976).CrossRefGoogle Scholar
  37. 37.
    R. B. Webb and M. M. Malina, Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of Escherichia coli, Photochem. Photobiol. 12, 457–468 (1970).CrossRefGoogle Scholar
  38. 38.
    S. A. Gordon, A. N. Stroud, and C. H. Chen, The introduction of chromosomal aberrations in pig kidney cells by far-red light, Radiat. Res. 45, 274–287 (1971).CrossRefGoogle Scholar
  39. 39.
    C. H. Chen and S. A. Gordon, Inhibition of 3H-thymidine incorporation in pig kidney cells by farred light, Photochem. Photobiol. 15, 107–109(1972).CrossRefGoogle Scholar
  40. 40.
    R. M. Klein and P. C. Edsall, Interference by near ultraviolet and green light with growth of animal and plant cell cultures, Photochem. Photobiol. 6, 841–850 (1967).CrossRefGoogle Scholar
  41. 41.
    H. Ninnemann and B. Epel, Inhibition of cell division by blue light, Exp. Cell Res. 79, 318–326 (1973).CrossRefGoogle Scholar
  42. 42.
    A. Shatkay and I. Michaeli, EPR study of wool irradiated with blue light, Photochem. Photobiol. 15, 119–138(1972).CrossRefGoogle Scholar
  43. 43.
    N. I. Krinsky, Cellular damage initiated by visible light, in: The Survival of Vegetative Microbes (T. G. R. Gray and J. R. Postgate, eds.) (Soc. Gen. Biol. Symp. No. 26), pp. 209–239, Cambridge University Press, London (1976).Google Scholar
  44. 44.
    P. Halpern, J. V. Dave, and N. Braslaw, Sea-level solar radiation in the biologically active spectrum, Science 186, 1204–1208 (1974).CrossRefGoogle Scholar
  45. 45.
    D. Mackay, A. Eisenstark, R. B. Webb, and M. S. Brown, Action spectra for lethality in recombinationless strains of Salmonella typhimurium and Escherichia coli, Photochem. Photobiol. 24, 337–343 (1976).CrossRefGoogle Scholar
  46. 46.
    M. J. Peak, J. G. Peak, and R. B. Webb, Synergism between different near-ultraviolet wavelengths in the inactivation of transforming DNA, Photochem. Photobiol. 21, 129–131 (1975).CrossRefGoogle Scholar
  47. 47.
    K. D. Martignoni and K. C. Smith, The synergistic action of ultraviolet and X radiation on mutants of Escherichia coli K-12, Photochem. Photobiol. 18, 1–8(1973).CrossRefGoogle Scholar
  48. 48.
    R. M. Tyrrell, The interaction of near UV (365 nm) and X-radiations on wild-type and repair deficient strains of Escherichia coli K-12: Physical and biological measurements, Int. J. Radiat. Biol. 25, 373–390(1974).CrossRefGoogle Scholar
  49. 49.
    S. Wolf and H. E. Luippold, Mitotic delay and the apparent synergism of far-red radiation and X-rays in the production of chromosomal aberrations, Photochem. Photobiol. 4, 439–445 (1965).CrossRefGoogle Scholar
  50. 50.
    I. Willis, A. Kligman, and J. H. Epstein, Effects of long ultraviolet rays on human skin: Photoprotective or photoaugmentative? J. Invest. Dermatol. 59, 416–420 (1972).CrossRefGoogle Scholar
  51. 51.
    W. C. Dewey, L. E. Hopwood, S. A. Sapareto, and L. E. Gerweck, Cellular responses to combinations of hyperthermia and radiation, Radiology 123, 463–474 (1977).Google Scholar
  52. 52.
    R. M. Tyrrell, Synergistic lethal action of ultraviolet-violet radiations and mild heat in Escherichia coli, Photochem. Photobiol. 24, 345–351 (1976).CrossRefGoogle Scholar
  53. 53.
    J. H. Epstein, Ultraviolet carcinogenesis, Photophysiology 5, 235–273 (1970).Google Scholar
  54. 54.
    R. M. Tyrrell, RecA+-dependent synergism between 365 nm and ionizing radiation in log-phase Escherichia coli: A model for oxygen-dependent near-UV inactivation by disruption of DNA repair, Photochem. Photobiol. 23, 13–20(1976).CrossRefGoogle Scholar
  55. 55.
    K. C. Smith and K. D. Martignoni, Protection of Escherichia coli cells from ultraviolet and X-irradiation by prior X-irradiation: A genetic and physiological study, Photochem. Photobiol. 24, 515–523 (1976).CrossRefGoogle Scholar
  56. 56.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev. 40, 869–907 (1976).Google Scholar
  57. 57.
    P. R. Schimmel, G. P. Budzik, S. S. M. Lam, and H. J. P. Shoemaker, In Vitro studies of photochemically cross-linked protein-nucleic acid complexes. Determinations of cross-linked regions and structural relationships in specific complexes, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 123–148, Plenum Press, New York (1976).Google Scholar
  58. 58.
    T. T. Puck and F.-T. Kao, Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants, Proc. Natl. Acad. Sci. USA 58, 1227–1234 (1967).CrossRefGoogle Scholar
  59. 59.
    J. D. Regan, R. B. Setlow, and R. D. Ley, Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine, Proc. Natl. Acad. Sci. USA 68, 708–712(1971).CrossRefGoogle Scholar
  60. 60.
    F. Hutchinson, The lesions produced by ultraviolet light in DNA containing 5-bromouracil, Q. Rev. Biophys. 6, 210–246 (1973).CrossRefGoogle Scholar
  61. 61.
    L. A. Herzenberg, R. G. Sweet, and L. A. Herzenberg, Fluorescence-activated cell sorting, Sci. Am. 234, 108–117 (1976).CrossRefGoogle Scholar
  62. 62.
    P. M. Kraemer, L. L. Deaven, H. A. Crissman, J. A. Steinkamp, and D. F. Petersen, On the nature of heteroploidy, Cold Spring Harbor Symp. Quant. Biol. 38, 133–144 (1974).CrossRefGoogle Scholar
  63. 63.
    M. W. Berns, Biological, photochemical, and spectroscopic application of lasers, Photochemical and Photobiological Reviews ,Vol. 2 (K. C. Smith, ed.). pp. 1–37, Plenum Press, New York (1977).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Department of RadiologyStanford University, School of MedicineStanfordUSA

Personalised recommendations