Advertisement

Photosynthesis

Chapter

Abstract

Photosynthesis, the conversion of light energy into stabilized chemical energy, involves the absorption of light by a pigment, energy transfer, energy trapping or stabilization by reaction centers, and the initiation of chemical reactions from donor to acceptor molecules. The process continues with a sequence of oxidation-reduction reactions that comprise the electron transport that leads to the formation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). Reactions leading to the fixation of carbon are powered by the energy available in the molecules of NADPH and ATP. Photosynthesis can be studied from many points of view, including those of the physicist, physical chemist, biochemist, biologist, ecologist, and agronomist.

Keywords

Reaction Center Light Reaction Spinach Chloroplast Accessory Pigment Hill Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Clayton, Photochemical reaction centers and photosynthetic membranes, Adv. Chem. Phys. 19, 353–378 (1971).CrossRefGoogle Scholar
  2. 2.
    R. K. Clayton, Primary processes in bacterial photosynthesis, Annu. Rev. Biophys. Bioeng. 2, 131–156 (1973).CrossRefGoogle Scholar
  3. 3.
    P. Loach and J. J. Katz, Primary photochemistry of photosynthesis, Photochem. Photobiol. 17, 195–208 (1973).CrossRefGoogle Scholar
  4. 4.
    M. D. Kamen, Primary Processes in Photosynthesis ,Academic Press, New York and London (1963).Google Scholar
  5. 5.
    R. K. Clayton, Molecular Physics in Photosynthesis ,Blaisdell, New York and London (1965).Google Scholar
  6. 6.
    L. P. Vernon and G. R. Seely (eds.), The Chlorophylls ,Academic Press, New York and London (1966).Google Scholar
  7. 7.
    A. San Pietro, F. A. Greer, and T. J. Army (eds.), Harvesting The Sun-Photosynthesis In Plant Life ,Academic Press, New York and London (1967).Google Scholar
  8. 8.
    E. Rabinowitch and Govindjee, Photosynthesis ,Wiley, New York (1969).Google Scholar
  9. 9.
    R. K. Clayton, Light and Living Matter ,Vol. 1: The Physical Part ,McGraw-Hill, New York (1970).Google Scholar
  10. 10.
    R. P. F. Gregory, Biochemistry of Photosynthesis ,Wiley-Interscience, London (1971).Google Scholar
  11. 11.
    D. O. Hall and K. K. Rao, Photosynthesis, Studies in Biology ,No. 37, Edward Arnold, London (1972).Google Scholar
  12. 12.
    R. K. Clayton, Photosynthesis: How Light is Converted to Chemical Energy ,Addison-Wesley Module in Biology No. 13, Addison-Wesley, Reading, Mass. (1974).Google Scholar
  13. 13.
    Govindjee and R. Govindjee, The absorption of light in photosynthesis, Sci. Am. 231, 68–82 (1974).Google Scholar
  14. 14.
    Govindjee (ed.), Bioenergetics of Photosynthesis ,Academic Press, New York and London (1975).Google Scholar
  15. 15.
    A. L. Lehninger, Biochemistry ,Chap. 34, Worth, New York (1970).Google Scholar
  16. 16.
    D. H. Kenyon and G. Steinman, Biochemical Predestination ,McGraw-Hill, New York (1969).Google Scholar
  17. 17.
    A. I. Oparin, The origin of life and the origin of enzymes, Adv. Enzymol. 27, 347–380 (1965).Google Scholar
  18. 18.
    S. W. Fox, Self-ordered polymers and propagative cell-like systems, Naturwissenschaften 56,1–9 (1969).CrossRefGoogle Scholar
  19. 19.
    J. H. C. Smith and C. S. French, The major and accessory pigments in photosynthesis, Annu. Rev. Plant Physiol. 14, 181–224 (1963).CrossRefGoogle Scholar
  20. 20.
    J. S. Brown, Forms of chlorophyll in vivo, Annu. Rev. Plant Physiol. 23, 73–86 (1972).CrossRefGoogle Scholar
  21. 21.
    Govindjee and B. Z. Braun, Light absorption, emission, and photosynthesis, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 346–390 University of California Press, Berkeley, Calif. (1974).Google Scholar
  22. 22.
    H. Y. Yamamoto, T. O. M. Nakayama, and C. O. Chichester, Studies on the light and dark interconversions of leaf xanthophylls, Arch. Biochem. Biophys. 97, 168–173 (1962).CrossRefGoogle Scholar
  23. 23.
    D. Siefermann and H. Y. Yamamoto, Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. V. Dehydroascorbate, a link between photosynthetic electron transport and deepoxidation. Proc. 3rd Int. Congr. Photosyn. (M. Avron. ed.). pp. 1991–1998 (1974).Google Scholar
  24. 24.
    K. Sauer, Primary events and the trapping of energy, in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 115–181, Academic Press, New York (1975).Google Scholar
  25. 25.
    D. E. Fleischman and B. C. Mayne, Chemically and physically induced luminescence as a probe of photosynthetic mechanisms, Curr. Top. Bioenerg. 5, 77–105 (1973).Google Scholar
  26. 26.
    J. Lavorel, Luminescence, in Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 223–317, Academic Press, New York (1975).Google Scholar
  27. 27.
    G. Hoch and R. S. Knox, Primary processes in photosynthesis, Photophysiology 3, 225–251 (1968).Google Scholar
  28. 28.
    R. S. Knox, Excitation energy transfer and migration: Theoretical considerations, in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 183–221, Academic Press, New York (1975).Google Scholar
  29. 29.
    T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Physik. 2, 55–75 (1948).CrossRefGoogle Scholar
  30. 30.
    T. Förster, Delocalized excitation and excitation transfer, in: Modern Quantum Chemistry ,Part III, Action of Light and Organic Molecules (O. Sinanoglu, ed.), pp. 93–137, Academic Press, New York (1965).Google Scholar
  31. 31.
    D. C. Fork and J. Amesz, Spectrophotometric studies of the mechanism of photosynthesis, Photophysiology 5, 97–126 (1970).Google Scholar
  32. 32.
    D. C. Fork and J. Amesz, Action spectra and energy transfer in photosynthesis, Annu. Rev. Plant Physiol. 20, 305–328 (1969).CrossRefGoogle Scholar
  33. 33.
    F. T. Haxo, Wavelength dependence of photosynthesis and the role of accessory pigments, in: Comparative Biochemistry of Photoreactive Systems (M. B. Allen, ed.), Academic Press, New York and London (1960).Google Scholar
  34. 34.
    J. Myers, Enhancement studies in photosynthesis, Annu. Rev. Plant Physiol. 22, 289–312 (1971).CrossRefGoogle Scholar
  35. 35.
    J. Myers and C. S. French, Relationships between time course, chromatic transients, and enhancement phenomena of photosynthesis, Plant Physiol. 35, 963–969 (1960).CrossRefGoogle Scholar
  36. 36.
    R. Hill and F. Bendall, Function of the two cytochrome components in chloroplasts: A working hypothesis, Nature 186, 136–137 (1960).CrossRefGoogle Scholar
  37. 37.
    L. N. M. Duysens, J. Amesz, and B. M. Kamp, Two photochemical systems in photosynthesis, Nature 190, 510–511 (1961).CrossRefGoogle Scholar
  38. 38.
    B. Kok and W. Gott, Activation spectra of 700 absorption change in photosynthesis, Plant Physiol. 35, 802–808 (1960).CrossRefGoogle Scholar
  39. 39.
    C. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta 189, 366–383 (1969).CrossRefGoogle Scholar
  40. 40.
    N. Murata, Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta 172, 242–251 (1969).CrossRefGoogle Scholar
  41. 41.
    N. Murata, Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis, Biochim. Biophys. Acta 205, 379–389 (1970).CrossRefGoogle Scholar
  42. 42.
    N. Murata, Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts, Biochim. Biophys. Acta 189, 171–181 (1969).CrossRefGoogle Scholar
  43. 43.
    N. Murata, Control of excitation transfer in photosynthesis. V. Correlation of membrane structure to regulation of excitation transfer between two pigment systems in isolated spinach chloroplasts, Biochim. Biophys. Acta 245, 365–372 (1971).CrossRefGoogle Scholar
  44. 44.
    N. Murata, H. Tashiro, and A. Takamiya, Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts, Biochim. Biophys. Acta 197, 250–256 (1970).CrossRefGoogle Scholar
  45. 45.
    T. Hiyama and B. Ke, Difference spectra and extinction coefficients of P700, Biochim. Biophys. Acta 267, 160–172 (1972).CrossRefGoogle Scholar
  46. 46.
    T. Hiyama and B. Ke, A new photo synthetic pigment “P430”: Its possible role as the primary electron acceptor of photosystem I, Proc. Natl. Acad. Sci. USA 68, 1010–1013 (1971).CrossRefGoogle Scholar
  47. 47.
    T. Hiyama and B. Ke, A further study of P430: A possible primary electron acceptor of photosystem I, Arch. Biochem. Biophys. 147, 99–108 (1971).CrossRefGoogle Scholar
  48. 48.
    A. J. Bearden and R. Malkin, Primary photochemical reactions in chloroplast photosynthesis, Q. Rev. Biophys. 7, 131–177 (1975).CrossRefGoogle Scholar
  49. 49.
    J. W. M. Visser, K. P. Rijgersberg, and J. Amesz, Light-induced reactions of ferredoxin and P700 at low temperatures, Biochim. Biophys. Acta 368, 235–246 (1974).CrossRefGoogle Scholar
  50. 50.
    D. O. Hall, R. Cammack, and K. K. Rao, Non-haem iron proteins, in: Iron in Biochemistry and Medicine (A. Jocob and M. Worwood, eds.), Academic Press, New York and London (1974).Google Scholar
  51. 51.
    W. L. Butler, Primary photochemistry of photosystem II of photosynthesis, Accounts Chem. Res. 6, 177–184 (1973).CrossRefGoogle Scholar
  52. 52.
    G. Döring, G. Renger, J. Vater, and H. T. Witt, Properties of the photoactive chlorophyll a-II in photosynthesis, Z. Naturforsch. [B] 24, 1139–1143 (1969).Google Scholar
  53. 53.
    R. H. Floyd, B. Chance, and D. DeVault, Low temperature photoinduced reactions in green plants and chloroplasts, Biochim. Biophys. Acta 226, 103–112 (1971).CrossRefGoogle Scholar
  54. 54.
    L. N. M. Duysens and H. E. Sweers, Mechanism of two photochemical reactions in algae as studied by means of fluorescence, in: Microalgae and Photosynthetic Bacteria ,pp. 353–372, University of Tokyo Press, Tokyo (1963).Google Scholar
  55. 55.
    D. B. Knaff and D. I. Arnon, Spectral evidence for a new photoreactive component of the oxygen-evolving system in photosynthesis, Proc. Natl. Acad. Sci. USA 63, 963–969 (1969).CrossRefGoogle Scholar
  56. 56.
    K. Erixon and W. L. Butler, The relationship between Q, C550 and cytochrome b559 in photoreactions at -196°C in chloroplasts, Biochim. Biophys. Acta 234, 381–389 (1971).Google Scholar
  57. 57.
    K. Erixon and W. L. Butler, Light-induced absorbance changes in chloroplasts at-196°C, Photochem. Photobiol. 14, 427–433 (1971).CrossRefGoogle Scholar
  58. 58.
    S. Okayama and W. L. Butler, Extraction and reconstitution of photosystem II, Plant Physiol. ,49, 769–774 (1972).CrossRefGoogle Scholar
  59. 59.
    R. Malkin and D. Knaff, Effect of oxidizing treatment on chloroplast photosystem II reactions, Biochim. Biophys. Acta ,325, 336–340 (1973).CrossRefGoogle Scholar
  60. 60.
    P. Joliot, G. Barbieri, and R. Chabaud, Un nouveau modele des centres photochimiques du système II, Photochem. Photobiol. 10, 309–329 (1969).CrossRefGoogle Scholar
  61. 61.
    B. Kok, B. Forbush, and M. McGloin, Cooperation of charges in photosynthetic O2 evolution. 1. A linear four step mechanism, Photochem. Photobiol. 11, 457–475 (1969).Google Scholar
  62. 62.
    G. M. Cheniae, Photosystem II and O2 evolution, Annu. Rev. Plant Physiol. 21, 467–498 (1970).CrossRefGoogle Scholar
  63. 63.
    M. Schwartz, The relation of ion transport to phosphorylation, Annu. Rev. Plant Physiol. 22, 469–484 (1971).CrossRefGoogle Scholar
  64. 64.
    M. Avron and J. Neumann, Photophosphorylation in chloroplasts, Annu. Rev. Plant Physiol. 19, 137–166 (1968).CrossRefGoogle Scholar
  65. 65.
    G. Hind and A. T. Jagendorf, Separation of light and dark stages in phosphorylation, Proc. Natl. Acad. Sci. USA 49, 715–722 (1963).CrossRefGoogle Scholar
  66. 66.
    A. T. Jagendorf, Mechanism of phosphorylation, in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 413–492, Academic Press, New York (1975).Google Scholar
  67. 67.
    P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature 191, 144–148 (1961).CrossRefGoogle Scholar
  68. 68.
    P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41, 445–502 (1966).CrossRefGoogle Scholar
  69. 69.
    G. Hind and A. T. Jagendorf, The effect of uncouplers on the conformational and high energy states of chloroplasts, J. Biol. Chem. 240, 3202–3209 (1965).Google Scholar
  70. 70.
    A. T. Jagendorf and E. Uribe, ATP formation caused by acid-base transition of spinach chloroplasts, Proc. Natl. Acad. Sci. USA 55, 170–177 (1966).CrossRefGoogle Scholar
  71. 71.
    R. A. Dilley, Coupling of ion and electron flow in chloroplasts, Curr. Top. Bioenerg. 4, 237–271 (1971).Google Scholar
  72. 72.
    H. Baltscheffsky and M. Baitscheffsky, Energy conversion reactions in bacterial photosynthesis, Curr. Top. Bioenerg. 4, 273–325 (1971).Google Scholar
  73. 73.
    D. C. Fork and J. Amesz, Light-induced shifts in the absorption spectrum of carotenoids in red and brown algae, Photochcm. Photobiol 6, 913–918 (1967).CrossRefGoogle Scholar
  74. 74.
    D. C. Fork, Light-induced shifts in the absorption spectrum of carotenoids and chlorophyll b in the green alga Ulva, Carnegie Inst. Year Book 72, 374–376 (1973).Google Scholar
  75. 75.
    H. T. Witt, Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis, Q. Rev. Biophys. 4, 365–437 (1971).CrossRefGoogle Scholar
  76. 76.
    H. T. Witt, B. Rumberg, W. Junge, G. Döring, H. H. Stiehl, J. Weikard, and Ch. Wolff, Evidence for the coupling of electron transfer, field changes, proton translocation and phosphorylation in photosynthesis, Prog. Photosyn. Res. 3, 1361–1373 (1969).Google Scholar
  77. 77.
    D. Branton, Structure of the photosynthetic apparatus, Photophysiology 3, 197–224 (1968).Google Scholar
  78. 78.
    C. J. Arntzen and J.-M. Briantais, Chloroplast structure and function, in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 51–113 Academic Press, New York (1975).Google Scholar
  79. 79.
    J. A. Bassham, Kinetic studies of photosynthetic carbon reduction cycle, Annu. Rev. Plant Physiol. 15, 101–120(1964).CrossRefGoogle Scholar
  80. 80.
    M. D. Hatch and C. R. Slack, Photosynthetic CO2 fixation pathways, Annu. Rev. Plant Physiol. 21, 141–162 (1970).CrossRefGoogle Scholar
  81. 81.
    O. Björkman and J. Berry, High efficiency photosynthesis. Sci. Am. 229, 80–93 (1973).CrossRefGoogle Scholar
  82. 82.
    M. Calvin, Solar energy by photosynthesis, Science 184, 375–381 (1974).CrossRefGoogle Scholar
  83. 83.
    T. W. Goodwin (ed.), Chemistry and Biochemistry of Plant Pigments ,Academic Press, New York and London (1965).Google Scholar
  84. 84.
    A. Dunn and J. Arditti, Experimental Physiology ,Holt. Rinehart, and Winston, New York (1968).Google Scholar
  85. 85.
    J. McD. Armstrong, The molar extinction of 2,6-dichlorophenol indophenol, Biochim. Biophys. Acta 86, 194–197 (1964).CrossRefGoogle Scholar
  86. 86.
    D. I. Arnon, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol. 24, 1–15 (1949).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA

Personalised recommendations