Skip to main content

Mathematical Models and Their Formulation

  • Chapter
Handbook of Applied Mathematics

Abstract

With a few exceptions, the chapters of this handbook are concerned with mathematical methods useful in the quantitative analysis of problems in science and engineering. An important and challenging aspect of any quantitative study of a real-life phenomenon is the formulation of mathematical problems which are relevant to a better understanding of the phenomenon and to which these mathematical methods can be applied. Real-life phenomena are usually too complex to be analyzed quantitatively without idealization and simplification. It is just not feasible or practical to follow the individual motions of trillions of molecules in a cubic centimeter of air or the evolution of billions of stars in a typical galaxy. For many practical purposes, however, information about a body of matter (or a galaxy) can be obtained by treating the collection of molecules (or stars) in that body as a “continuous medium” having properties, such as density, velocity, etc., that vary smoothly throughout the body. In this continuum model, the equilibrium or motion of the body under external forces and torques, for example, may be taken as a consequence of Euler’s laws of mechanics for continuous media. The mathematical methods described in this handbook may now be used to deduce from Euler’s law an initial/boundary-value problem for differential equations that governs the mechanical behavior of the continuum. Section 4.7 of this handbook gives a sample derivation of some relevant differential equations of this mathematical model, widely known as continuum mechanics, for the study of the mechanics of deformable bodies of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, M. D., et al., Case Studies in Applied Mathematics, MAA Publication ( Comm. on the Undergrad. Program in Math. ), 1976.

    Google Scholar 

  2. von Kârmân, T., and Biot, M. A., Mathematical Methods in Engineering, McGraw-Hill, New York, 1940.

    Google Scholar 

  3. Genin, J., and Maybee, J. S., Introduction to Applied Mathematics, vol. 1, Holt, Rinehart and Winston, New York, 1970.

    Google Scholar 

  4. Pollard, H., Applied Mathematics: An Introduction, Addison-Wesley, Reading, Mass., 1972.

    Google Scholar 

  5. Lin, C. C., and Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan, New York, 1974.

    Google Scholar 

  6. Lancaster, P., Mathematics: Models of the Real World, Prentice-Hall, Englewood Cliffs, N.J., 1976.

    Google Scholar 

  7. Haberman, R., Mathematical Models, Prentice-Hall, Englewood Cliffs, N.J., 1977.

    Google Scholar 

  8. Bluman, G. W., “Dimensional Analysis, Symmetry and Modelling,” Appl. Math. Notes, 6, 122–135, 1981.

    Google Scholar 

  9. Barenblatt, G. I., Similarity, Self-Similarity, and Intermediate Asymptotics, Consultants Bureau (Div. Plenum ), New York, 1979.

    Google Scholar 

  10. Bluman, G. W., and Cole, J. D., Similarity Methods for Differential Equations, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

    Book  Google Scholar 

  11. Birkhoff, G., Hydrodynamics ( 2nd ed. ), Princeton Univ. Press, Princeton, N.J., 1960.

    Google Scholar 

  12. Bridgman, P. W., Dimensional Analysis (rev, ed.), Yale Univ. Press, New Haven, Conn., 1931 (paperback ed., 1963 ).

    Google Scholar 

  13. Sedov, L. J., Similarity and Dimensional Methods in Mechanics ( 4th ed. ), Academic Press, New York, 1959.

    Google Scholar 

  14. de Jong, F. J., Dimensional Analysis for Economists, North-Holland Publishing, Amsterdam, 1967.

    Google Scholar 

  15. Becker, H. A., Dimensionless Parameters. Theory and Method, Halsted Press (div. Wiley ), New York, 1976.

    Google Scholar 

  16. Kurth, R., Dimensional Analysis and Group Theory in Astrophysics, Pergamon Press, Oxford-New York, 1972.

    Google Scholar 

  17. Taylor, G. I., “The Formation of a Blast Wave by a Very Intense Explosion, I.: The Atomic Explosion of 1945,” Proc. Roy. Soc. A, 201, 175, 1950.

    Google Scholar 

  18. Baker, W. E., Explosions in Air, Univ. of Texas Press, Austin, Tex., 1973.

    Google Scholar 

  19. Mills, E. S., Urban Economics, Scott, Foresman, Glenview, Ill., 1972.

    Google Scholar 

  20. Bartholomew, H., Land Uses in American Cities, Harvard Univ. Press, Cambridge, Mass., 1955.

    Google Scholar 

  21. Haig, R. M., “Toward an Understanding of the Metropolis,” Quart. J. Econ., 40, 421–423, 1926.

    Google Scholar 

  22. Alonso, W., Location and Land Use, Harvard Univ. Press, Cambridge, Mass., 1964.

    Google Scholar 

  23. Luce, R. D., and Raiffa, H., Games and Decisions, Wiley, New York, 1957.

    Google Scholar 

  24. Solow, R. M., “Congestion Cost and the U se of Land for Streets,” Bell J. Econ. Manag. Sci., 4, 602–618, 1973.

    Article  Google Scholar 

  25. Arnott, R. J., and MacKinnon, J. G., “Market and Shadow Land Rents with Congestion,” Am. Econ. Rev., 68, 588–600, 1978.

    Google Scholar 

  26. Solow, R. M., “Congestion, Density and the Use of Land in Transportation,” Swedish J. Econ., 74, 161–173, 1972.

    Article  Google Scholar 

  27. Wan, F. Y. M., “Perturbation and Asymptotic Solutions for Problems in the Theory of Urban Land Rent,” Studies Appl. Math., 56, 219–239, 1977.

    Google Scholar 

  28. Kanemoto, Y., Theories of Urban Externalities North-Holland, Amsterdam-New York, 1980. (Also, “Cost-Benefit Analysis and the Second Best Land Use for Transportation,” J. Urban Econ. 4, 483–503, 1977.)

    Google Scholar 

  29. Robson, A. J., “Cost-Benefit Analysis and the Use of Urban Land for Transportation,” J. Urban Econ., 3, 180–191, 1976.

    Article  Google Scholar 

  30. Wan, F. Y. M. M., “Accurate Solutions for the Second Best Land Use Problem, I: Absentee Ownership,” I.A.M.S. Tech. Report 79–30, Univ. of British Columbia, July 1979.

    Google Scholar 

  31. Wan, F. Y. M. M., “Accurate Solutions for the Second Best Land Use Problem, II: Public Ownership,” I.A.M.S. Tech. Report 83–20, Univ. of British Columbia, 1983.

    Google Scholar 

  32. Pearse, P., “The Optimum Forest Rotation,” Forestry Chron., 2, 178–195, 1967.

    Google Scholar 

  33. Fisher, I., The Theory of Interest, Macmillan, New York, 1930.

    Google Scholar 

  34. Clark, C. W., Mathematical Bioeconomics, Wiley, New York, 1976.

    Google Scholar 

  35. Samuelson, P. A., “Economics of Forestry in an Evolving Society,” Econ. Inqu., XIV, 466–492, 1976.

    Article  Google Scholar 

  36. Faustmann, M., “Berechnung des Werthes, welchen Weldboden sowie nach nicht haubare Holzbestande fur die Weldwirtschaft besitzen,” Allgemeine Forst und Jagd Zeitung, 25, 441, 1849.

    Google Scholar 

  37. Faustmann, M., “On the Determination of the Value Which Forest Land and Immature Stands Pose for Forestry,” in Martin Faustmann and the Evolution of Discounted Cash Flow M. Gane (ed.)., Oxford Institute Paper No. 42, 1968, Oxford.

    Google Scholar 

  38. Heaps, T., and Neher, P. A., “The Economics of Forestry When the Rate of Harvest Is Constrained,” J. Environ. Econ. Manage., 6, 297–319, 1979.

    Article  Google Scholar 

  39. Davidson, R., and Hellsten, M, M., “Optimal Forest Rotation With Costly Planting and Harvesting,” presented at the Fifth Canadian Conference on Economic Theory in Vancouver, B.C., May 1980.

    Google Scholar 

  40. Heaps, T, T., “The Forestry Maximum Principle,” presented at the Can. Appl. Math. Soc. Annual Meeting (Montreal), May 1981.

    Google Scholar 

  41. Wan, F. Y. M., and Anderson, K., “Ordered Site Access and Age Distribution in Harvesting Once-and-for-all Forests,” Stud. Appl. Math., 65, 1983.

    Google Scholar 

  42. Anderson, K., and Wan, F. Y. M. M., “Finite and Infinite Sequences Harvests of Ongoing Forests,” I.A.M.S. Tech. Rep. 81–14, Univ. British Columbia, 1981.

    Google Scholar 

  43. Flugge, W., and Riplog, P. M. M., “A Large Deformation Theory of Shell Membranes,” Tech. Rep. No. 102, Div. of Eng. Mech., Stanford Univ., Sept. 1956.

    Google Scholar 

  44. Johnson, M. W., “On the Dynamics of Shallow Elastic Membranes,” Theory of Thin Elastic Shells, (ed. W. T. Koiter ), Proc. IUTAM Symp. Delft, 1959.

    Google Scholar 

  45. Simmonds, J. G., “The Finite Deflection of a Normally Loaded Spinning Elastic Membrane,” J. Aerospace Sci., 29, 1180–1189, 1962.

    Google Scholar 

  46. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity ( 4th ed. ), Dover Publications, New York, 1944.

    Google Scholar 

  47. Reissner, E., “Symmetric Bending of Shallow Shells of Revolution,” J. Math. Mech., 7, 121–140, 1958.

    Google Scholar 

  48. Clark, R. A., “On the Theory of Thin Elastic Toroidal Shells,” J. Math. Phys., 29, 146–178, 1950.

    Google Scholar 

  49. Clark, R. A., “Asymptotic Solutions of Elastic Shell Problems,” Asymp. Soln. of ODE & Appl. (ed. C. H. Wilcox ), Wiley, New York, 1964, 185–209.

    Google Scholar 

  50. Seaman, W. J., and Wan, F. Y. M., “Lateral Bending and Twisting of Thin-Walled Curved Tubes,” Stud. Appl. Math., 53, 73–89: 1974.

    Google Scholar 

  51. Reissner, E., and Wan, F. Y. M., “Rotating Shallow Elastic Shells of Revolution,” J. SIAM 13, 333–352, 1965. (Also, T. V. Karman in Memoriam SIAM Publication, Philadelphia, 1965, 159–178.)

    Google Scholar 

  52. Timoshenko, S., and Woinowsky-Krieger, S., Theory of Plates and Shells ( 2nd ed. ), McGraw-Hill, New York, 1959.

    Google Scholar 

  53. Larkin, P. A., “Scientific Technology Needs for Canadian Shelf-seas Fisheries,” Interim Report, Fisheries Research Board of Canada, Ottawa, Feb. 1975.

    Google Scholar 

  54. Ludwig, D., “Some Mathematical Problems in the Management of Biological Resources,” Appl. Math. Notes, 2, 39–56, 1976.

    Google Scholar 

  55. Aronson, D. G., and Weinberger, H. F., “Nonlinear Diffusion in Population in Mathematics, vol. 446 (Partial Differential Equations and Related Topics), Springer, Berlin, 1975, 5–49.

    Google Scholar 

  56. Wan, F. Y. M., “Bifurcation Theory and the Two Hundred Mile Fishing Limit,” Appl. Math. Notes, 4, 74–87, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Wan, F.Y.M. (1990). Mathematical Models and Their Formulation. In: Pearson, C.E. (eds) Handbook of Applied Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1423-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1423-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-00521-4

  • Online ISBN: 978-1-4684-1423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics