Skip to main content

Conclusions and Future Perspectives

  • Chapter
  • 130 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

We have summarized those bioenergetical processes which we applied to GPCR signalling, and presented a new model for transmembrane signal transduction mediated via (ligand-induced) GPCR and G protein activation. The classical model for G protein activation is based on an exchange mechanism followed by GTP hydrolysis. Our new model is based on GTP synthesis from GDP and Pi, also followed by GTP hydrolysis. Because of amplification levels (1) (synthesis) and (3) (exchange) depicted in Figure 7.1, both the classical and our new model will give rise to similar nucleotide exchange patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaldenberg-Stasch S, Baden M, Fesseler B et al. Receptor-stimulated guanine nucleotide-triphosphate binding to guanine nucleotide-binding regulatory proteins. Eur J Biochem 1994; 221:25–33.

    Article  PubMed  CAS  Google Scholar 

  2. Wieland T, Kaldenberg-Stasch S, Fesseler B et al. Regulation of G protein function by phosphorylation. Can J Physiol Pharmacol 1994; 72:S5.

    Google Scholar 

  3. Wieland T, Nürnberg B, Ulibarri I et al. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein β-subunits. J Biol Chem 1993; 268:18111–18118.

    PubMed  CAS  Google Scholar 

  4. Kowluru A, Seavey SE, Rhodes CJ et al. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent β cells. Biochem J 1996; 313:97–107.

    PubMed  CAS  Google Scholar 

  5. Leurs R, Smit MJ, Tensen CP et al. Site-directed mutagenesis of histamine H1-receptor reveals a selective interaction of asparagine207 with subclasses of H1 receptor agonists. Biochem Biophys Res Comm 1994; 201:295–301.

    Article  PubMed  CAS  Google Scholar 

  6. Leurs R, Smit MJ, Meerder R et al. Lysine200 located in the fifth transmembrane domain of the histamine H1 receptor interacts with histamine but not all H1 agonists. Biochem Biophys Res Comm 1995; 214:110–117.

    Article  PubMed  CAS  Google Scholar 

  7. ter Laak AM, Timmerman H, Leurs R et al. Modelling and mutations studies on the histamine H1 receptor agonist binding site reveal different binding modes for H1 agonists; Asp116 (TM3) has a constitutive role in receptor stimulation. J Comp-Aided Mol Design 1995; 9:319–330.

    Article  Google Scholar 

  8. Wiens BL, Nichols DE, Mailman RB et al. Multiple determinants of agonist efficacy at dopamine D2 receptors. Soc Neurosci Abstracts 1994; 20:524.

    Google Scholar 

  9. Hausdorff WP, Hnatowich M, O’Dowd BF et al. A mutation of the β2 adrenergic receptor impairs agonist activation of adenylate cyclase without affecting high affinity agonist binding. J Biol Chem 1990; 265:1388–1393.

    PubMed  CAS  Google Scholar 

  10. Ernst OP, Hofmann KP, Sakmar TP. Characterization of rhodop-sin mutants that bind transducin but fail to induce GTP nucleotide uptake. J Biol Chem 1995; 270:10580–10586.

    Article  PubMed  CAS  Google Scholar 

  11. Samama P, Cotecchia S, Costa T et al. A mutation-induced activated state of the β2 adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268:4625–4636.

    PubMed  CAS  Google Scholar 

  12. Ross EM. G protein-coupled receptors: structural basis of selective signalling. NATO ASI Series, Series H 1991; 52:163–177.

    CAS  Google Scholar 

  13. Timms D, Wilkinson AJ, Kelly DR et al. Interactions of Tyr377 in a ligand-activation model of signal transmission through β1 adrenoceptor α-helices. Int J Quant Chem: Quant Biol Symp 1992; 19:197–215.

    Article  CAS  Google Scholar 

  14. Timms D, Wilkinson AJ, Kelly DR et al. Ligand-activated transmembrane proton transfer in β1 adrenergic and m2 muscarinic receptors. Receptors and Channels 1994; 2:107–119.

    PubMed  CAS  Google Scholar 

  15. Coleman DE, Sprang SR. How G proteins work: a continuing story Trends Biochem Sci 1996; 21:41–44.

    CAS  Google Scholar 

  16. Clapham DE. The G protein nanomachine. Nature 1996; 379:297–299.

    Article  PubMed  CAS  Google Scholar 

  17. Andersson H, von Heijne G. Membrane protein topology effects of ΔμH+ on the translocation of charged residues explain the ‘positive inside’ rule. EMBO J 1994; 13:2267–2272.

    PubMed  CAS  Google Scholar 

  18. von Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 1986; 5:3021–3027.

    PubMed  CAS  Google Scholar 

  19. Seifert R, Hagelücken A, Höer A et al. The H1 receptor agonist 2-(3-chlorophenyl)histamine activates Gi proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. Mol Pharmacol 1994; 45:578–586.

    PubMed  CAS  Google Scholar 

  20. Hagelücken A, Grünbaum L, Klinker JF et al. Histamine receptor-dependent and/or-independent activation of guanine nucleotide-binding proteins by histamine and 2-substituted histamine derivatives in human leukemia (HL-60) and human erythroleukemia (HEL) cells. Biochem Pharmacol 1995; 49:901–914.

    Article  Google Scholar 

  21. Morowitz HJ. Proton semiconductors and energy transduction in biological systems. Am J Physiol 1978; 235:R99-R114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nederkoorn, P.H.J., Timmerman, H., den Kelder, G.M.DO. (1997). Conclusions and Future Perspectives. In: Signal Transduction by G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1407-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1407-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1409-7

  • Online ISBN: 978-1-4684-1407-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics