Skip to main content

Primary and Secondary Proton Pumps

  • Chapter
  • 132 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Primary pups differ highly depending upon the energy source used by the membrane. For example, the respiratory chains of mammalian mitochondria act as oxidation-reduction driven proton pumps, which transfer electrons from the NAD+/NADH couple to the O2/H2O couple. The respiratory chain consists of more than 20 discrete carriers of electrons which are mainly grouped into four polypeptide complexes: NADH-ubiquinone oxidoreductase, succinate dehydrogenase, ubiquinol-cytochrome c oxido-reductase and cytochrome c oxidase. Three of these complexes are involved in proton translocation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Timms D Wilkinson AJ, Kelly DR et al. Interactions of Tyr377 in a ligand-activation model of signal transmission through β1adrenoceptor α-helices. Int J Quant Chem: Quant Biol Symp 1992; 19:197–215.

    Article  CAS  Google Scholar 

  2. Timms D Wilkinson AJ, Kelly DR et al. Ligand-activated transmembrane proton transfer in β1adrenergic and m2-muscarinergic receptors. Receptors and Channels 1994; 2:107–119.

    PubMed  CAS  Google Scholar 

  3. Samama, Cotecchia S, Costa T et al. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268:4625–4636.

    PubMed  CAS  Google Scholar 

  4. Hoflack J, Trumpp-Kallmeyer S, Hibert M. Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trends Pharmacol Sci 1994; 15:7–9.

    Article  PubMed  CAS  Google Scholar 

  5. Hendersn R, Baldwin JM, Ceska TA et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990; 213:899–929.

    Article  Google Scholar 

  6. Dencher NA, Biildt G, Heberle J et al. Light-triggered opening and closing of a hydrophobic gate controls vectorial proton transfer across bacteriorhodopsin. NATO ASI Ser, Ser B 1992; 291:171–185.

    Article  CAS  Google Scholar 

  7. McMahon HT, Nicholls DG. The bioenergetics of neurotransmitter release. Biochim Biophys Acta 1991; 1059:243–264.

    Article  PubMed  CAS  Google Scholar 

  8. Njus D, Kelly PM, Harnadek GJ. Bioenergetics of secretory vesicles. Biochim Biophys Acta 1986; 853:237–265.

    Article  PubMed  CAS  Google Scholar 

  9. Pederse PL, Amzel LM. ATP synthases. Structure, reaction center, mechanism, and regulation of nature’s most unique machines. J Biol Chem 1993; 268:9937–9940.

    Google Scholar 

  10. Pedersn PL, Schwerzmann K, Cintron N. Regulation of the synthesis and hydrolysis of ATP in biological systems: Role of peptide inhibitors of proton-ATPases. Curr Top Bioenerg 1981; 11:149–199.

    Google Scholar 

  11. Tonomur Y. F1-ATPase. In: Energy-transducing ATPases—structure and kinetics. Avon: Cambridge University Press, 1986:141–183.

    Google Scholar 

  12. Abrahas JP, Leslie AGW, Lutter R et al. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 1994; 370:621–628.

    Article  Google Scholar 

  13. Penefsy HS, Cross RL. Structure and mechanism of F0F1-type ATP synthases and ATPases. Adv Enzymol 1991; 64:173–214.

    Google Scholar 

  14. Xue Z, Boyer PD. Modulation of the GTPase activity of the chlo-roplast F1-ATPase by ATP binding at noncatalytic sites. Eur J Biochem 1989; 179:677–681.

    Article  PubMed  CAS  Google Scholar 

  15. Boyer D. A perspective of the binding change mechanism for ATP synthesis. FASEB J 1989; 3:2164–2178.

    PubMed  CAS  Google Scholar 

  16. Nichols DG, Ferguson SJ. In: Bioenergetics 2. London: Academic Press, 1992.

    Google Scholar 

  17. Mitchel P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett 1974; 43:189–194.

    Article  Google Scholar 

  18. Mitchel P. Biochemical mechanism of protonmotivated phosphorylation in F0-F1 adenosine triphosphate molecules. In: Lee CP, Schatze G, Dallner G, eds. Mitochondria and Microsomes. Reading: Addison Wesley, 1981:427–457.

    Google Scholar 

  19. Morowiz HJ. Proton semiconductors and energy transduction in biological systems. Am J Physiol 1978; 235:R99–R114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nederkoorn, P.H.J., Timmerman, H., den Kelder, G.M.DO. (1997). Primary and Secondary Proton Pumps. In: Signal Transduction by G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1407-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1407-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1409-7

  • Online ISBN: 978-1-4684-1407-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics