Skip to main content

Experimental Evidence for Spatio-Temporal Chaos in Diffusion-Limited Growth Phenomena

  • Chapter
  • 202 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 276))

Abstract

Interfacial growth processes are generally fascinating nonequilibrium phenomena; physical, chemical, biological and geophysical systems exhibit similar rich morphologies1–4. The main characteristic feature of these systems is the existence of a diffusion field that drives them far from equilibrium. In this context, the diffusion limited aggregation (DLA) model introduced by Witten and Sander5 in 1981 has played a major role since it has stimulated a variety of renewed experiments and numerical simulations1–4. But, despite the apparent simplicity of the DLA model, there is still no rigourous theory for diffusion-limited growth processes. Many important theoretical questions remain unanswered; in particular, it is still an open question whether the geometrical complexity of DLA clusters is a product of the randomness in the growth process6,7 or the result of a proliferation of deterministic tip-splitting instablities8–11. Indeed, most previous works5,12–21 have mainly focused on the geometrical properties of growing aggregates. The fractal geometry of DLA clusters has been analyzed using powerful mathematical techniques such as the computation of the generalized fractal dimensions and f(α) spectrum22,23 and very recently, the application of the wavelet transform24,25. In a previous work, we have succeeded in elucidating the conjectured self-similarity23–25 of DLA clusters. These aggregates are homogeneous fractals; that is, on a range of physical scales, the mass locally behaves as a power-law of the length scale with a unique scaling exponent α ~ 1.60, which is independent of the point chosen on the cluster. DLA clusters are thus statistically self-similar: the generalized fractal dimensions are all equal D q = 1.60 ± 0.02. In an experimental study23,25 we have shown that electrodeposition clusters, grown in the limit of weak current and small concentrations of electroactive species are also statistically self-similar. Within the experimental uncertainty their fractal dimensions D q = 1.63 ± 0.03 are in very good agreement with D q for DLA clusters. Moreover, it has been recently realized that this geometrical self-similarity of diffusion—controlled aggregates is intimately related to the non-homogeneous distribution of the velocity field along the cluster boundary. The same mathematical tools have been applied to characterize the multifractal properties of the growth probability distribution (or sticking probability) of DLA clusters11,26–32; its f(α)-spectrum is non-trivial, and the dimensions D q decrease with increasing q. Experimental evidence for the multifractal nature of the growth probability distribution has been also reported in Refs 33, 34.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Guttinger and D. Dangelmayr, eds, “The Physics of Structure Formation”, Springer-Verlag, Berlin (1987).

    Google Scholar 

  2. H.E. Stanley and N. Ostrowsky, eds, “Random Fluctuations and Pattern Growth”, Kluwer Academic Publisher, Dordrecht (1988).

    Google Scholar 

  3. J. Feder, “Fractals”, Pergamon, New York (1988).

    MATH  Google Scholar 

  4. T. Vicsek, “Fractal Growth Phenomena”, World Scientific, Singapore (1989).

    MATH  Google Scholar 

  5. T. Witten and L. M. Sander, Phys. Rev. Lett. 47:1400 (1981); Phys. Rev. B 27:5686 (1983).

    Article  ADS  Google Scholar 

  6. H. E. Stanley, in Ref. 1, p.210.

    Google Scholar 

  7. J. Nittman and H. E. Stanley, Nature 321:663 (1986); J. Phys. A 20:L1185 (1987).

    Article  ADS  Google Scholar 

  8. L. M. Sander, in “Fractal in Physics”, L. Pietronero and E. Tosati, eds, North-Holland, Amsterdam (1986).

    Google Scholar 

  9. L. M. Sander, in Ref. 1, p.257.

    Google Scholar 

  10. L. M. Sander, P. Ramanlal and E. Ben-Jacob, Phys. Rev. A 32:3160 (1985).

    Article  ADS  Google Scholar 

  11. P. Ramanlal and L. M. Sander, J. Phys. A 21:L995 (1988).

    Article  ADS  Google Scholar 

  12. L. A. Turkevich and H. Scher, Phys. Rev. Lett. 55:1026 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  13. R. C. Ball, Physica A 140:62 (1986).

    Article  ADS  Google Scholar 

  14. T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56:854 (1986).

    Article  ADS  Google Scholar 

  15. M. Matsushita, K. Konda, H. Toyoki, Y. Hayakawa and H. Kondo, J. Phys Soc Jpn. 55:2618 (1986).

    Article  ADS  Google Scholar 

  16. P. Meakin, Phys. Rev. A 27:1495 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Meakin and Z. R. Wasserman, Chem. Phys. 91:391 (1984).

    Article  Google Scholar 

  18. P. Meakin and L. M. Sander, Phys. Rev. Lett. 54:2053 (1985).

    Article  ADS  Google Scholar 

  19. R. C. Ball and R. M. Brady, J. Phys. A 18:L809 (1985).

    Article  ADS  Google Scholar 

  20. P. Meakin, Phys. Rev. A 33:3371 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Meakin, R. C. Ball, P. Ramanlal and L. M. Sander, Phys. Rev. A 35:5233 (1987).

    Article  ADS  Google Scholar 

  22. P. Meakin and S. Havlin, Phys. Rev. A 36:4428 (1987).

    Article  ADS  Google Scholar 

  23. F. Argoul, A. Arneodo, G. Grasseau and H. L. Swinney, Phys. Rev. Lett. 61:2558 (1988).

    Article  ADS  Google Scholar 

  24. A. Arneodo, F. Argoul, J. Elezgaray and G. Grasseau, in “Nonlinear Dynamics”, G. Turchetti, ed., World Scientific, Singapore (1989) p. 130.

    Google Scholar 

  25. F. Argoul, A. Arneodo, J. Elezgaray, G. Grasseau and R. Murenzi, Phys. Lett A 135:327 (1989); Phys. Rev. A 41:5537 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Meakin, Phys. Rev. A 34:710 (1986); 35:2234 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Amitrano, A. Coniglio and F. di Liberto, Phys. Rev. Lett. 57:1016 (1986).

    Article  ADS  Google Scholar 

  28. P. Meakin, A. Coniglio, H. E. Stanley and T. A. Witten, Phys. Rev. A 34:3325 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A 36:1963 (1987).

    Article  ADS  Google Scholar 

  30. J. Lee and H. E. Stanley, Phys. Rev. Lett. 61:2945 (1988).

    Article  ADS  Google Scholar 

  31. R. C. Ball and M. Blunt, Phys. Rev. A 39:3591 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Argoul, A. Arneodo, J. Elezgaray and G. Grasseau, in “Mesures of Complexity and Chaos”, N. B: Abraham, A. M. Albano, A. Passamante and P. E. Rapp, eds, Plenum Press, New York (1989) p.433.

    Google Scholar 

  33. S. Ohta and H. Honjo, Phys. Rev. Lett. 60:611 (1988).

    Article  ADS  Google Scholar 

  34. M. Blunt and P. King, Phys. Rev. A 37:3935 (1988).

    Article  ADS  Google Scholar 

  35. A. R. Despic and K. I. Popov, in “Modern Aspects of Electrochemistry”, B.E. Conway and J.O’M Bockris, eds, Plenum Press, New York (1972).

    Google Scholar 

  36. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, Wiley, New York (1980).

    Google Scholar 

  37. R. M. Brady and R. C. Ball, Nature (London) 309:225 (1984).

    Article  ADS  Google Scholar 

  38. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53:286 (1984).

    Article  ADS  Google Scholar 

  39. M. Matsushita, Y. Hayakawa and Y. Sawada, Phys. Rev. A 32:3814 (1985).

    Article  ADS  Google Scholar 

  40. Y. Sawada, A. Doughterty and J. P. Gollub, Phys. Rev. Lett 56:1260 (1986).

    Article  ADS  Google Scholar 

  41. D. G. Grier, E. Ben-Jacob, R. Clarke and L. M. Sander, Phys. Rev. Lett. 56:1264 (1986).

    Article  ADS  Google Scholar 

  42. D. G. Grier, D. A. Kessler and L. M. Sander, Phys. Rev. Lett. 59:2315 (1987).

    Article  ADS  Google Scholar 

  43. G. L.M.K.S. Kahanda and M. Tomkiewicz, J. Electrochem. Soc. 136:1497 (1989).

    Article  Google Scholar 

  44. D. P. Barkey, R. H. Muller and C. W. Tobias, J. Electrochem. Soc. 136:2199 (1989); 136:2207 (1989).

    Article  Google Scholar 

  45. J. R. Melrose and D. B. Hibbert, Phys. Rev. A 40:1727 (1989).

    Article  ADS  Google Scholar 

  46. R. M. Suter and P. Wong, Phys. Rev. B 39:4536 (1989).

    Article  ADS  Google Scholar 

  47. D. G. Grier, K. Allen, R. S. Goldman, L. M. Sander and R. Clarke, Phys. Rev. Lett. 64:2152 (1990).

    Article  ADS  Google Scholar 

  48. J. N. Chazalviel, “Some electrochemical aspects of the generation of fractal electrodeposits”, preprint (1990).

    Google Scholar 

  49. F. Argoul and A. Arneodo, J. Phys. France 51:2477 (1990).

    Article  Google Scholar 

  50. T. C. Halsey and M. Leibig, “Electrodeposition and diffusion-limited aggregation”, preprint (1989).

    Google Scholar 

  51. J. E. Marsden and M. Mc Cracken, “Hopf Bifurcation and its Applications”, Applied Math. Sci. 19, Springer-Verlag, New York (1976).

    Google Scholar 

  52. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields”, Springer-Verlag, Berlin (1984).

    Google Scholar 

  53. C. Vidal and A. Pacault, eds, “Nonlinear Phenomena in Chemical Dynamics”, Springer-Verlag, Berlin (1981).

    Google Scholar 

  54. C. Vidal and A. Pacault, eds, “Nonequilibrium Dynamics in Chemical Systems”, Springer-Verlag, Berlin (1984).

    Google Scholar 

  55. L. D. Landau and E. M. Lifschitz, “Fluid Mechanics”, Pergamon, New York (1975).

    Google Scholar 

  56. P. Cvitanovic, ed., “Universality in Chaos”, Hilger, Bristol (1984).

    MATH  Google Scholar 

  57. H. Bai-Lin, ed., “Chaos”, World Scientific, Singapore (1984).

    MATH  Google Scholar 

  58. H. G. Schuster, “Deterministic Chaos”, Physik-Verlag, Weinheim (1984).

    MATH  Google Scholar 

  59. P. Bergé, Y. Pomeau and C. Vidal, “Order within Chaos”, Wiley, New York (1986).

    MATH  Google Scholar 

  60. N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw, Phys. Rev. Lett. 45:712 (1980).

    Article  ADS  Google Scholar 

  61. F. Takens, Lect. Notes Math. 898:366 (1981).

    Article  MathSciNet  Google Scholar 

  62. P. Collet and J. P. Eckmann, “Iterated Maps of an Interval as Dynamical Systems”, Birkhauser, Boston (1980).

    Google Scholar 

  63. M. J. Feigenbaum, J. Stat. Phys. 19:25 (1978); 21:669 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. P. Coullet and C. Tresser, J. Physique Colloq. France 39:C5 (1978).

    Google Scholar 

  65. C. Tresser and P. Coullet, C. R. Acad. Sci. 287:577 (1978).

    MathSciNet  MATH  Google Scholar 

  66. A. Arneodo and O. Thual, in Ref. 1, p.313.

    Google Scholar 

  67. T. Morita, J. Math. Phys. 12:744 (1971).

    Google Scholar 

  68. F. Spitzer, “Principles of Random Walk”, Springer-Verlag, Berlin (1976).

    MATH  Google Scholar 

  69. L. Niemeyer, L. Pietronero and H. Wiesman, Phys. Rev. Lett. 52:1033 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  70. We have used the NSPCG package for solving large sparse linear systems by iterative methods which was implemented on the Cray by T.C. Oppe, W.D. Jou-bert and D.R. Kincaid at the Center for Numerical Studies of the University of Texas at Austin.

    Google Scholar 

  71. M. Tokuyama and K. Kawasaki, Phys. Lett. A 100:337 (1984).

    Article  ADS  Google Scholar 

  72. K. Honda, H. Toyaki and M. Matsushita, J. Phys. Soc. Jpn 55:707 (1986)

    Article  ADS  Google Scholar 

  73. B. B. Mandelbrot, Physica Scripta 32:257 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. B. B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman and Co, New York (1982).

    MATH  Google Scholar 

  75. H. O. Peitgen and D. Saupe, eds, Springer-Verlag, New York (1988).

    Google Scholar 

  76. F. Anselmet, Y. Gagne, E. J. Hopfinger and R. A. Antonia, J. Fluid. Mech. 140:63 (1984).

    Article  ADS  Google Scholar 

  77. B. Castaing, Y. Gagne and E. J. Hopfinger, Physica D 46:177 (1990).

    Article  ADS  MATH  Google Scholar 

  78. F. Argoul, A. Arneodo and J. Elezgaray, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Argoul, F., Arneodo, A., Elezgaray, J., Swinney, H.L. (1991). Experimental Evidence for Spatio-Temporal Chaos in Diffusion-Limited Growth Phenomena. In: Amar, M.B., Pelcé, P., Tabeling, P. (eds) Growth and Form. NATO ASI Series, vol 276. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1357-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1357-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1359-5

  • Online ISBN: 978-1-4684-1357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics