Skip to main content

Trace Gas Detection with Infrared Gas Lasers

  • Chapter
Book cover Applied Laser Spectroscopy

Part of the book series: NATO ASI Series ((NSSB,volume 241))

Abstract

The growing concern about our environment has led to a demand for methods and equipment which can perform a wide variety of monitoring tasks. The detection of specific molecules in the atmosphere may be motivated by the need for monitoring the emission of toxic chemicals used by industry, or by the need to perform a general control of the air we breathe, in particular in areas which are subject to large scale emission caused by human activities, such as traffic, livestock breeding, and energy production. In addition, it may be motivated by the need to get a better understanding of global trends in the concentration of molecules which are of importance in connection with the greenhouse effect and ozone destruction in the stratosphere, or it may simply be necessary in order to get a deeper insight into the huge number of physical and chemical processes which occur in the atmosphere, and which act together to produce what we commonly denote as weather and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ” Monitoring of gaseous pollutants by tunable diode lasers”, Eds. R.Grisar, G.Schmidtke, M.Tacke, and G.Restelli, Kluwer Academic Publishers, ISBN 0–7923–0334–2 (1989).

    Google Scholar 

  2. G.A.West, J.J.Barrett, D.R.Siebert, and K.V.Reddy, Rev.Sci.Instr. 54, 797 (1983).

    Article  CAS  Google Scholar 

  3. G.L.Loper, G.R.Sasaki, and M.A.Stamps, Appl.Optics 21, 1648 (1982).

    Article  CAS  Google Scholar 

  4. G.L.Loper, A.R.Calloway, M.A.Stamps, and J.A.Gelbwachs, Appl.Optics 19, 2726 (1980).

    Article  CAS  Google Scholar 

  5. R.J.Brewer and C.W.Bruce, Appl.Optics 17, 3746 (1978).

    Article  CAS  Google Scholar 

  6. A.Mayer, J.Cornera, H.Charpentier, and C. Jaussaud, Appl.Optics 17, 391 (1978), and ibid. 19, 1572 (1980).

    Article  CAS  Google Scholar 

  7. A.D.Devis and U.P.Oppenheim, Appl.Optics 8, 2121 (1969).

    Article  Google Scholar 

  8. W.Schnell and G.Fischer, Appl.Optics 14, 2058 (1975).

    Article  CAS  Google Scholar 

  9. P.Anderson and U.Persson, Appl.Optics 23, 192 (1984).

    Article  Google Scholar 

  10. R.R.Patty, G.M.Russwurm, W.A.McClenny, and D.R.Morgan, Appl.Optics 13, 2850 (1974).

    Article  CAS  Google Scholar 

  11. P.L.Meyer, M.W.Sigrist, F.K.Kneubühl, and J.Hinderling, Infrared Phys. 27, 345 (1987).

    Article  CAS  Google Scholar 

  12. L.S.Rothman et al., Appl. Optics 22, 2247–2256 (1983).

    Article  CAS  Google Scholar 

  13. L.S.Rothman et al., Appl. Optics 26, 4058 (1986).

    Article  Google Scholar 

  14. N.Husson et al., Ann.Geophys. 4, 185 (1986).

    Google Scholar 

  15. S.T.Kornilov, I.V.Ostrejkovskij, E.D.Potsenko, V.M.Mikhailov, and S.N.Murzin, Int.J.Infrared and MM Waves 10 (1989).

    Google Scholar 

  16. M.Inguscio, N.Ioli, A.Moretti, F.Strumia, and F.d’Amato, Int.J.Infrared and MM Waves 5, 1615 (1984)

    Article  CAS  Google Scholar 

  17. F.Tang, A.Olafsson, and J.Henningsen, Appl.Phys. B 47, 47 (1988).

    Article  Google Scholar 

  18. D.T.Cassidy and J.Reid, Appl.Optics 21, 1185 (1982).

    Article  CAS  Google Scholar 

  19. J.Reid, J.Shewchun, B.K.Garside, and E.A.Balik, Appl.Optics 17, 300 (1978).

    Article  CAS  Google Scholar 

  20. A.G.Bell, Phil Mag. 11, 510 (1881).

    Google Scholar 

  21. J.Tyndall, Proc.Roy.Soc. (London) 31, 307 (1881).

    Google Scholar 

  22. W.C.Röntgen, Phil.Mag. 11, 308 (1881).

    Google Scholar 

  23. C.F.Dewey, R.D.Kamm, and C.E.Hackett, Appl.Phys.Lett. 23, 633 (1973).

    Article  CAS  Google Scholar 

  24. V.P.Zharov and V.S.Lethokov ”Laser Optoacoustic Spectroscopy”, Springer Verlag, Heidelberg (1986).

    Google Scholar 

  25. ”Photoacoustic, Photothermal, and Photochemical Processes in Gases”, Topics in Applied Physics 46, Ed. P.Hess, Springer Verlag (1989).

    Google Scholar 

  26. E.Kritchman, S.Shtrikman, and M.Slatkine, J.Opt.Soc.Am. 68, 1257 (1978).

    Article  CAS  Google Scholar 

  27. A.L.Gandurin et al., Sov.J.Appl.Spectrosc. 45, 769 (1986), engl.transi. 45, 886 (1987).

    Google Scholar 

  28. S.Bernegger and M.W.Sigrist, Appl.Phys. B 44, 125 (1987).

    Article  Google Scholar 

  29. R.Gerlach and N.M.Amer, Appl.Phys 23, 319 (1980).

    Article  Google Scholar 

  30. Ch.J.Borde, Journ. de Phys., suppl. no. 10, 44, C6–593 (1983).

    Google Scholar 

  31. St.Bernegger, P.L.Meyer, C.Widmer, and M.W.Sigrist, in ”Photoacoustic and Photothermal Phenomena”, Eds. P.Hess and J.Pelzl, Springer Verlag, Heidelberg (1988).

    Google Scholar 

  32. G.L.Loper, J.A.Gelbwachs, and S.M.Beck, Can.J.Phys. 64, 1124 (1986).

    Article  CAS  Google Scholar 

  33. P.Perlmutter, S.Shtrikman, and M.Slatkine, Appl.Optics 18, 2267 (1979).

    Article  CAS  Google Scholar 

  34. F.J.M.Harren, J.Reuss, D.D.Bicanic, and E.J.Woltering, in ”Photoacoustic and Photothermal Phenomena”, Eds. P.Hess and J.Pelzl, Springer Verlag, Heidelberg (1988).

    Google Scholar 

  35. F.J.M.Harren, F.G.C.Bijnen, J.Reuss, L.A.C.J.Voesenek, and C.W.P.M.Blom, in ”Monitoring of gaseous pollutants by tunable diode lasers”, Eds. R.Grisar, G.Schmidtke, M.Tacke, and G.Restelli, Kluwer Academic Publishers, ISBN 0–7923–0334–2 (1989).

    Google Scholar 

  36. A.Olafsson and J.Henningsen, 11th Int. Conf. on Infrared and Mm Waves, Tirrrenia, Pisa (1987).

    Google Scholar 

  37. A.Olafsson, M.Hammerich, J.Bülow, and J.Henningsen, Appl.Phys. B 49, 91 (1989).

    Article  Google Scholar 

  38. F.Tang and J.O.Henningsen, Appl.Phys. B 44, 93–98 (1987).

    Article  Google Scholar 

  39. A.D.Wood, M.Camac, and E.T.Gerry, Applied Optics 10, 1877–1884 (1971).

    Article  CAS  Google Scholar 

  40. F.G.Gebhardt and D.C.Smith, Applied Phys. Lett. 20, 129 (1972).

    Article  CAS  Google Scholar 

  41. M.Hammerich, A.Olafsson, and J.Henningsen, European Quantum Electronics Conference, Hannover, September 1988, paper MoCD2.

    Google Scholar 

  42. A.Olafsson, unpublished.

    Google Scholar 

  43. R.A.Roth, A.J.L.Verhage, and L.W.Wouters, 6th Int. Topical Meeting on Photoacoustic and Pho- tothermal Phenomena, Baltimore, july/aug (1989).

    Google Scholar 

  44. H.Sauren, B. van Hove, W.Tonk, H.Jalink, and D.D.Bicanic, in ”Monitoring of gaseous pollutants by tunable diode lasers”, Eds. R.Grisar, G.Schmidtke, M.Tacke, and G.Restelli, Kluwer Academic Publishers, ISBN 0–7923–0334–2 (1989).

    Google Scholar 

  45. ”Chemical Engineers Handbook”, Ed. John H.Perry, p.14–4, McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Henningsen, J., Olafsson, A., Hammerich, M. (1990). Trace Gas Detection with Infrared Gas Lasers. In: Demtröder, W., Inguscio, M. (eds) Applied Laser Spectroscopy. NATO ASI Series, vol 241. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1342-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1342-7_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1344-1

  • Online ISBN: 978-1-4684-1342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics