Skip to main content

Brillouin Gain Spectroscopy in Glasses and Crystals

  • Chapter
Applied Laser Spectroscopy

Part of the book series: NATO ASI Series ((NSSB,volume 241))

  • 475 Accesses

Abstract

Gain spectroscopy is a well established technique for the study of nonlinear scattering phenomena. Several capabilities of gain spectroscopy make the technique very powerful for frequency domain measurements of scattering processes. The use of gain spectroscopy is illustrated by the application of the technique to Brillouin measurements in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kaiser and M. Maier, Stimulated Rayleigh, Brillouin and Raman Spectroscopy, chapter E2 in “Laser Handbook, ” vol. 2, F. T. Arecchi and E. O. Schulz- Dubois, eds., North-Holland Publishing Company, Amsterdam (1972).

    Google Scholar 

  2. Y. R. Shen, “The Principles of Nonlinear Optics, ” John Wiley & Sons, New York (1984).

    Google Scholar 

  3. G. L. Eesley, “Coherent Raman Spectroscopy, ” Pergamon Press, Oxford (1981).

    Google Scholar 

  4. A. Owyoung, CW Stimulated Raman Spectroscopy, pp. 281–320, in: “Chemical Applications of Nonlinear Raman Spectroscopy, ” A. B. Harvey, ed., Academic Press, New York, (1981).

    Google Scholar 

  5. S. Y. Tang, C. Y. She, and S. A. Lee, Continuous-Wave Rayleigh-Brillouin-Gain Spectroscopy in SF6, Opt. Lett. 12:870 (1987).

    Article  CAS  Google Scholar 

  6. G. C. Herring, M. J. Dyer, and W. K. Bischel, High Resolution Stimulated Rayleigh-Brillouin Spectroscopy of Xe and SF6, to be published.

    Google Scholar 

  7. W. J. Jones and B. P. Stoicheff, Inverse Raman Spectra: Induced Absorption at Optical Frequencies, Phys. Rev. Lett. 13:657 (1964).

    Article  CAS  Google Scholar 

  8. P. Esherick and A. Owyoung, High Resolution Stimulated Raman Spectroscopy, in: “Advances in Infrared and Raman Spectroscopy, ” R. J. H. Clark and R.E. Hester, eds., Heyden and Son, Ltd., London (1982).

    Google Scholar 

  9. G. C. Herring, M. J. Dyer, and W. K. Bischel, Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2, Phys. Rev. A 34:1944 (1986).

    Article  CAS  Google Scholar 

  10. L. A. Rahn and D. A. Greenhalgh, High-Resolution Inverse Raman Spectroscopy of the V1 Band of Water Vapor, J. Mol. Spectrosc. 119:11 (1986).

    Article  CAS  Google Scholar 

  11. A. E. Siegman, “Lasers,” University Science Books, Mill Valley, California (1986), p. 335.

    Google Scholar 

  12. R. L. Schmitt and L. A. Rahn, Diode-Laser-Pumped Nd: YAG Laser Injection Seeding System, Appl. Opt. 25:629 (1986)

    Article  CAS  Google Scholar 

  13. M. J. Dyer, W. K. Bischel and D. G. Scerbak, High-Power 80-ns Transform-Limited Nd:YAG Laser, in. SPIE vol. 912 - “Pulsed Single-Frequency Lasers: Technology and Applications,” the Society of Photo- Optical Intrumentation Engineers, Bellingham, Washington (1988).

    Google Scholar 

  14. R. Wallenstein and T. W. Hänsch, Powerful Dye Laser Oscillator-Amplifier System for High Resolution Spectroscopy, Opt. Commun. 14:353 (1975)

    Article  CAS  Google Scholar 

  15. P. Drell and S. Chu, A Megawatt Dye Laser Oscillator-Amplifier System for High Resolution Spectroscopy, Opt. Commun. 28:343 (1979).

    Article  CAS  Google Scholar 

  16. G. C. Herring, M. J. Dyer, and W. K. Bischel, Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2, Opt. Lett. 11:348 (1986).

    Article  CAS  Google Scholar 

  17. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, Comparison of Rotationally Inelastic Collision Models for Q-Branch Raman Spectra of N2, Chem. Phys. Lett. 133:513 (1987).

    Article  CAS  Google Scholar 

  18. W. K. Bischel and M. J. Dyer, Wavelength Dependence of the Absolute Raman Gain Coefficient of the Q(1) Transition in H2, J. Opt. Soc. Am. B 3:677 (1986).

    Article  CAS  Google Scholar 

  19. R. L. Farrow and L. A. Rahn, Optical Stark Splitting of Rotational Raman Transitions, Phys. Rev. Lett. 48:395 (1982).

    Article  CAS  Google Scholar 

  20. W. K. Bischel, M. J. Dyer and L. E. Jusinski, Study of the ac Stark Effect for the Q(0) and Q(l) Vibrational Raman Transitions in H2, to be published.

    Google Scholar 

  21. G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bischel and A. P. Hickman, High Resolution Brillouin Gain Spectroscopy in Glasses and Crystals, to be published.

    Google Scholar 

  22. C. Y. She, G. C. Herring, H. Moosmüller, and S. A. Lee, Stimulated Rayleigh-Brillouin Gain Spectroscopy in Pure Gases, Phys. Rev. Lett. 51:1648 (1983).

    Article  CAS  Google Scholar 

  23. I. L. Fabelinskii, “Molecular Scattering of Light,” Plenum Press, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Faris, G.W. (1990). Brillouin Gain Spectroscopy in Glasses and Crystals. In: Demtröder, W., Inguscio, M. (eds) Applied Laser Spectroscopy. NATO ASI Series, vol 241. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1342-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1342-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1344-1

  • Online ISBN: 978-1-4684-1342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics