Skip to main content

Microscopic Simulations of Exothermic Chemical Systems

  • Chapter
Microscopic Simulations of Complex Flows

Part of the book series: NATO ASI Series ((NSSB,volume 236))

Abstract

Molecular dynamics techniques are becoming a valuable tool in bridging the gap between the phenomenological analysis of large scale macroscopic phenomena and their modelling at the microscopic level. As stressed throughout this volume, in recent years a great amount of effort has been devoted to the application of these techniques in the study of hydrod3mamic phenomena in non-reactive fluids such as shock-waves, flow past an obstacle or Bénard convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Portnow, Phys. Lett. 51A 370 (1975)

    ADS  Google Scholar 

  2. P. Ortoleva and S. Yip, J. Chem. Phys. 65, 2045 (1976).

    Article  ADS  Google Scholar 

  3. J. Boissonade, Phys. Lett. 74A 285 (1979).

    ADS  Google Scholar 

  4. J. Boissonade, Physica 113A 607 (1982); ibid, in Nonlinear Phenomena in Chemical Dynamics C. Vidal and A. Pacault Eds., Springer-Verlag, Berlin (1981).

    ADS  Google Scholar 

  5. G. Nicolis, A. Amellal, G. Dupont and M. Mareschal, J. Mol. Liq. 41, 5 (1989).

    Article  Google Scholar 

  6. F. Baras, J. Pearson and M. Malek Mansour (preprint); see also M. Mareschal, chapter in this voltmie.

    Google Scholar 

  7. D. P. Chou and S. Yip, Combust. Flame 47 215 (1982); ibid. Combust. Flame 58 239 (1984); ibid in Chemical Instabilities G. Nicolis and F. Baras Eds., Reidel, Dordrecht (1984).

    Article  Google Scholar 

  8. D. A. Frank Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press (1969).

    Google Scholar 

  9. F. Baras and M. Malek Mansour, Phys. Rev. Lett., 63, 2429 (1989).

    Article  ADS  Google Scholar 

  10. G.A. Bird, Molecular Gas Dynamics Oxford University Press, London (1976).

    Google Scholar 

  11. E.P. Muntz, Ann. Rev. Fluid Mech. 21, 387 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  12. G.A. Bird, in Rarefied Gas Dynamics Eleventh Symposium, R. Campargue Ed., vol. 1, 365, CEA, Paris (1979).

    Google Scholar 

  13. I. Prigogine and E. Xhrouet, Physica15 913 (1949);see also C. F. Curtiss, Ph. D. dissertation. University of Wisconsin, impublished (1948).

    Article  ADS  MATH  Google Scholar 

  14. S. Chapman and T.G. Cowling Mathematical Theory of Nonuniform Gases Cambridge University Press, London (1939).

    Google Scholar 

  15. R. D. Present, J. Chem. Phys. 31 747 (1959).

    Article  ADS  Google Scholar 

  16. J. Ross and P. Mazur, J. Chem. Phys. 35,19 (1961).

    Article  ADS  Google Scholar 

  17. I. Prigogine and M. Mahieu, Physica 16 51 (1950).

    Article  ADS  MATH  Google Scholar 

  18. Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. MakhviladzeThe Mathematical Theory of Combustion and Explosions, Plenum Publ. Corp., New York (1985).

    Book  Google Scholar 

  19. N.W. Bazley and G.C. Wake, Combust. Flame 33,161 (1978)

    Article  Google Scholar 

  20. T. Takeno, Combust. Flame 29 209 (1977)

    Article  Google Scholar 

  21. W. Gill, A.B. Donaldson and A.R. Shouman, Combust. Flame 36, 217 (1979).

    Article  Google Scholar 

  22. T. Boddington, C.-G. Feng and P. Gray, J. Chem. Soc. Faraday 791499 (1983).

    Article  Google Scholar 

  23. G.C. Wake, Combust. Flame 39 215 (1980).

    Article  Google Scholar 

  24. P. Résibois and M. De Leener Classical Kinetic Theory of Fluids Wiley, New York (1977).

    Google Scholar 

  25. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York(1938)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Baras, F., Nicolis, G. (1990). Microscopic Simulations of Exothermic Chemical Systems. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics