Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 236))

  • 124 Accesses

Abstract

In the history of the kinetic theory of fluids, 1969–1970 was a crucial year. In that year Alder and Wainwright [2] published a paper in which they demonstrated the breakdown of the ‘Molecular Chaos’ assumption. The Molecular Chaos assumption, originally introduced by Boltzmann as the ‘Stoßzahlansatz’, states that the collisions experienced by a molecule in a fluid are uncorrelated. One consequence of this assumption is that the velocity autocorrelation function (VACF) of a tagged particle in fluid should decay exponentially. What Alder and Wainwright found is that the VACF of a particle in a moderately dense fluid of hard spheres or hard disks does not decay exponentially but algebraically. These algebraic long-time tails are the consequence of coupling between particle diffusion and shear modes in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Frenkel in: Liquids, Freezing and the Glass Transition, J. P. Hansen and D. Levesque (editors), North-Holland, Amsterdam, 1990.

    Google Scholar 

  2. B. J. Alder and T. E. Wainwright, Phys. Rev. A1:18(1970).

    ADS  Google Scholar 

  3. J.R. Dorfman and E.G.D. Cohen, Phys. Rev. Lett. 25:1257(1970), Phys. Rev. A6:776(1972),A12:292(1975).

    Article  ADS  Google Scholar 

  4. M.H. Ernst, E.H. Hauge and J.M.J. van Leeuwen, Phys. Rev. A4:2055(1971).

    ADS  Google Scholar 

  5. Y. Pomeau and P. Resibois, Physics Reports 19:63(1975).

    Article  ADS  Google Scholar 

  6. D. Levesque and W.T. Ashurst, Phys. Rev. Lett. 33:277(1974).

    Article  ADS  Google Scholar 

  7. J.J. Erpenbeck and W.W. Wood, Phys. Rev. A26:1648(1982).

    ADS  Google Scholar 

  8. J.J. Erpenbeck and W.W. Wood, Phys. Rev. A32:412(1985).

    ADS  Google Scholar 

  9. L de Schepper and M. H. Ernst, Physica 87A:35(1977)

    ADS  Google Scholar 

  10. D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. A16:732(1977).

    MathSciNet  ADS  Google Scholar 

  11. U. Frisch, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett. 56:1505(1986).

    Article  ADS  Google Scholar 

  12. J.-P. Boon and A. Noullez in: Proceedings of workshop on Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics, World Scientific, Singapore, 1989.

    Google Scholar 

  13. P.M. Binder and D. d’Humières, Los Alamos preprint LA-UR-1341(1988) and in ref.[23].

    Google Scholar 

  14. J. -P. Boon and A .Noullez, to be published.

    Google Scholar 

  15. D. Frenkel in: Proceedings of workshop on Cellular Automata and Modelling of Complex Physical Systems, P. Manneville(editor), Springer, Berlin, 1989.

    Google Scholar 

  16. D. Frenkel and M.H. Ernst, Phys. Rev. Lett. 63: 2165(1989).

    Article  ADS  Google Scholar 

  17. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J.-P. Rivet, Complex Systems 1:649(1987).

    MathSciNet  MATH  Google Scholar 

  18. J.-P. Rivet, M. Hénon, U. Frisch and D. d’Humières, Europhys. Lett. 7:231(1988).

    Article  ADS  Google Scholar 

  19. A.J.C. Ladd and D. Frenkel in: Proceedings of workshop on Cellular Automata and Modelling of Complex Physical Systems, P. Manneville(editor), Springer, Berlin, 1989.

    Google Scholar 

  20. D. d’Humières and P. Lallemand, Complex Systems 1:599(1987).

    Google Scholar 

  21. D. d’Humières, P. Lallemand and U. Frisch, Europhys. Lett. 2:291(1986).

    Article  ADS  Google Scholar 

  22. M.H. Ernst in: Proceedings of Les Houches Summerschool on Liquids, Freezing and the Glass Transition, J.P. Hansen and D. Levesque (editors). North-Holland, Amsterdam (1990).

    Google Scholar 

  23. Proceedings of workshop on Cellular Automata and Modelling of Complex Physical Systems, P. Manneville(editor), Springer, Berlin, 1989.

    Google Scholar 

  24. M. E. Colvin, A. J. C. Ladd and B. J. Alder, Phys. Rev. Lett. 61:381(1988)

    Article  ADS  Google Scholar 

  25. L. P. Kadanoff, G. R. McNamara and G. Zanetti, Phys. Rev. A40:4527(1989)

    ADS  Google Scholar 

  26. R. F. Fox, Phys. Rev. A27,3216(1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Frenkel, D., van der Hoef, M. (1990). A Test of Mode-Coupling Theory. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics