Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 236))

Abstract

The simulation of a stationary homogeneous shear flow is probably the most thoroughly investigated application of nonequilibrium molecular dynamics (NEMD). Well-probed algorithms are at hand which are discussed in several excellent reviews [1] and conference proceedings [2]. Even for the nonlinear regime their validity was established by means of nonlinear response theory for transient phenomena [3] and by comparing the steady-state response of a sheared gas with predictions of the Boltzmann equation [4,5]. Conversely, for the homogeneous heat flow a kinetic theory analysis was recentiy used to prove that no homogeneous driving force exists which generates the correct nonlinear heat conductivity [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. G. Hoover, Annu. Rev. Phys. Chem. 34, 103 (1983);

    Article  ADS  Google Scholar 

  2. D. J. Evans and G. P. Morriss, Comp. Phys. Rep. 1, 297 (1984);

    Article  ADS  Google Scholar 

  3. D. J. Evans and W. G. Hoover, Ann. Rev. Fluid Mech. 18, 243 (1986);

    Article  MathSciNet  ADS  Google Scholar 

  4. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  5. G. Ciccotti and W. G. Hoover (eds.), Molecular Dynamics Simulation of Statistical Mechanical Systems (North-Holland, Amsterdam, 1986);

    Google Scholar 

  6. H. J. M. Hanley (ed.). Nonlinear Fluid Behavior (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  7. D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984).

    Article  ADS  Google Scholar 

  8. S. Hess, H. J. M. Hanley, and N. Herdegen, Phys. Lett. 105A, 238 (1984);

    ADS  Google Scholar 

  9. A. J C. Ladd and W. G. Hoover, J. Stat. Phys. 38, 973 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. W. Loose, Phys. Lett. 128A, 39 (1988);

    ADS  Google Scholar 

  11. W. Loose and S. Hess, Phys. Rev. Lett. 58, 2443 (1987); Phys. Rev. A 37, 2099 (1988).

    Article  ADS  Google Scholar 

  12. W. Loose, Phys. Rev. A 40, 2625 (1989).

    Article  ADS  Google Scholar 

  13. J. W. Dufty, A. Santos, J. J. Brey and R. F. Rodriguez, Phys. Rev. A 33, 459 (1986); see also the article of Dufty, Brey and Santos in [2a].

    Article  ADS  Google Scholar 

  14. J. J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).

    Article  ADS  Google Scholar 

  15. S. Hess, Int J. Thermophys. 6, 657 (1985); J. Mec. Theor. Appl. (special issue) 1 (1985).

    Article  ADS  Google Scholar 

  16. D. M. Heyes, G. P. Morriss, D. J. Evans, J. Chem. Phys. 83, 4760 (1985).

    Article  ADS  Google Scholar 

  17. L. V. Woodcock, Phys. Rev. Lett. 54, 1513 (1985); Chem. Phys. Lett. 111, 455 (1984).

    Article  ADS  Google Scholar 

  18. D. L Evans and G. P. Morriss, Phys. Rev. Lett. 56, 2172 (1986).

    Article  ADS  Google Scholar 

  19. D. M. Heyes, J. J. Kim, C. J. Montrose, T. A. Litovitz, J. Chem. Phys. 73, 3987 (1980).

    Article  ADS  Google Scholar 

  20. H. J. M. Hanley, J. C. Rainwater, N. A. Clark, B. J. Ackerson, J. Chem. Phys. 79, 4448 (1983).

    Article  ADS  Google Scholar 

  21. S. Hess, Phys. Rev. A 22, 2844 (1980);

    Article  ADS  Google Scholar 

  22. S. Hess and H. J. M. Hanley, Phys. Rev. A 25, 1801 (1982);

    Article  ADS  Google Scholar 

  23. H. J. M. Hanley, J. C. Rainwater, and S. Hess, Phys. Rev. A 36, 1795 (1987).

    Article  ADS  Google Scholar 

  24. R. L. Hoffman, J. Coll. Int. Sci. 46, 491 (1974).

    Article  Google Scholar 

  25. H. J. M. Hanley, G. P. Morriss, T. R. Welberry, D. J. Evans, Physica 149A, 406 (1988).

    ADS  Google Scholar 

  26. D. J. Evans, Mol. Phys. 37, 1745 (1979).

    Article  ADS  Google Scholar 

  27. W. Loose and S. Hess, Rheol. Acta 28, 91 (1989).

    Article  Google Scholar 

  28. S. Hess and W. Loose, in: D. Axekad and W. Muschik (eds.). Constitutive Laws and Microstructure (Springer, Berlin, 1988).

    Google Scholar 

  29. M. Mareschal and E. Kestemont, Nature (London) 329, 427 (1987); J. Stat. Phys. 48, 1187 (1987); D. C. Rapaport, Phys. Rev. Lett. 60, 2480 (1988).

    Article  ADS  Google Scholar 

  30. M. Mareschal, M. Malek Mansour, A. Puhl, E. Kestemont, Phys. Rev. Lett. 61, 2550 (1988).

    Article  ADS  Google Scholar 

  31. T. R. Kirkpatrick and J. C. Nieuwoudt, Phys. Rev. Lett. 56, 885 (1986).

    Article  ADS  Google Scholar 

  32. J. W. Lutsko and J. W. Dufty, Phys. Rev. Lett. 57, 2775 (1986);

    Article  ADS  Google Scholar 

  33. J. W. Lutsko, J. W. Dufty, S. P. Das, Phys. Rev. A 39, 1311 (1989).

    Article  ADS  Google Scholar 

  34. L. V. Woodcock, J. Non-Newtonian Fluid Mech. 19, 349 (1986).

    Article  Google Scholar 

  35. B. J. Ackerson and P. N. Pusey, Phys. Rev. Lett. 61, 1033 (1988).

    Article  ADS  Google Scholar 

  36. R. H. Ottewill, P. Lindner, private communication, see also: Annual Report of the Institute Laue-Langevin, Grenoble (1987) p. 76.

    Google Scholar 

  37. O. Hess, W. Loose, T. Weider, and S. Hess, Physica B 156/157, 505 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Loose, W., Hess, S. (1990). Shear-induced ordering revisited. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics