Skip to main content

The Direct Simulation Monte Carlo Method: Current Status and Perspectives

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 236))

Abstract

Most analytical and numerical studies of the flow of liquids and gases have been based on models that regard them as structureless or continuous fluids. The texts on fluid mechanics make, at roost, a passing reference to the underlying atomic or molecular structure of the fluid and then concentrate exclusively on the continuum equations, generally the Navier-Stokes equations, that provide an approxim.ate mathematical model of the fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder, B.J. and Wainwright, T.E., 1958, Molecular dynamics by electronic computers, in “Transport Processes in Statistical Mechanics”, I. Prigogine, ed,, Interscience, New York

    Google Scholar 

  • Alsmeyer, H,, 1976, J. Fluid Mech., 74:497.

    Article  ADS  Google Scholar 

  • Belotserkovskii, O.M., Erofeev, A.I., and Yanitskii, V.E., 1980, A non-stationary method of direct statistical modelling of rarefied gas flows, USSR Comput, Math, and Math. Phys., 20:82.

    Google Scholar 

  • Bird, G.A., 1963, Approach to translational equilibrium in a rigid sphere gas, Phys. Fluids. 6:1518.

    Article  ADS  Google Scholar 

  • Bird, G.A., 1970a, Direct simulation and the Boltzmann equation, Phys. Fluids., 13:2676.

    Article  ADS  MATH  Google Scholar 

  • Bird, G.A., 1970b, Aspects of the structure of strong shock waves, Phys. Fluids, 13:1172.

    Article  ADS  Google Scholar 

  • Bird, G.A., 1970c, Breakdown of translational and rotational equilibrium in gaseous expansions, Phys. Fluids, 13:1172.

    Article  ADS  Google Scholar 

  • Bird, G.A., 1976a, “Molecular Gas Dynamics”, Oxford University Press, London.

    Google Scholar 

  • Bird, G.A., 1976b, Transition regime behavior of supersonic beam skimmers. Phys. Fluids, 19:1486.

    Article  ADS  Google Scholar 

  • Bird, G.A.,, 1977a Direct molecular simulation of a dissociating diatomic gas, J, Comput, Phys., 25:405.

    Article  Google Scholar 

  • Bird, G.A., 1977b, Direct simulation of the incompressible Kramers problem, Progr. in Astro, Aero., 51:323.

    ADS  Google Scholar 

  • Bird, G.A., 1979, Simulation of multi-dimensional and chemically reacting gas flows, in “Rarefied Gas Dynamics”, R. Campargue ed., CEA, Paris.

    Google Scholar 

  • Bird, G.A., 1981, Monte Carlo simulation in an engineering context, Progr. in Astro. and Aero., 74:239.

    ADS  Google Scholar 

  • Bird, G.A., 1983, Definition of mean free path for real gases, Phys. Fluids., 26:3222.

    Article  ADS  Google Scholar 

  • Bird, G.A., 1986, Low density aerothermodynamics, Progr. In Astro., and Aero., 103:3.

    Google Scholar 

  • Bird, G.A., 1987a, Direct simulation of high-vorticity gas flows, Phys. Fluids, 30:364.

    Article  ADS  Google Scholar 

  • Bird, G.A., 1987b, Nonequilibrium radiation during re-entry at 10 km/s. Am. Inst. Aero. Astro. Paper 87–1543.

    Google Scholar 

  • Bird, G.A., 1988a, Direct simulation of gas flows at the molecular level, Comm. in App. Numerical Methods, 4:165.

    Article  MATH  Google Scholar 

  • Bird, G.A., 1988b, Thermal and pressure diffusion effects in high altitude flows. Am. Inst. Aero. Astro Paper 88–2732.

    Google Scholar 

  • Bird, G.A., 1989a, The perception of numerical methods in rarefied dynamics, Progr. in Astro, and Aero., in press.

    Google Scholar 

  • Bird, G.A., 1989b, Computation of electron density in high altitude re-entry flows. Am. Inst. Aero. Astro Paper 89:1882.

    Google Scholar 

  • Borgnakke, C. and Larsen, P.S., 1975, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18:405.

    Article  ADS  Google Scholar 

  • Cattolica, R., Robben, F., Talbot, L., and Willis, D.R., 1974, Translational nonequilibrium in free jet expansions, Phys. Fluids 17:1793.

    Article  ADS  MATH  Google Scholar 

  • Chapman, S. and Cowling, T.G., 1952, ”The Mathematical Theory of Non-Uniform Gases”, Cambridge University Press, London.

    Google Scholar 

  • Davis, J., Dominy, R.G., Harvey, J.K., and Macrossan, M.N., 1983, An evaluation of some collision models used for Monte Carlo calculations of diatomic rarefied hypersonic flow, J. Fluid. Mech., 135:355.

    Article  ADS  MATH  Google Scholar 

  • Derzko, N.A., 1972, A review of Monte Carlo methods in kinetic theory, UTIAS Review 35, University of Toronto.

    Google Scholar 

  • Erwin, D.A., Muntz E.P., and Pham-Van-Diep, G., 1989, A review of detailed comparisons between experiments and DSMC calculations in nonequilibrium flows. Am, Inst, Aero, Astro., Paper 89–1883.

    Google Scholar 

  • Evans, D.J. and Hoover, W.G., 1986, Flows far from equilibrium via molecular dynamics, Ann. Rev. Fluid Mech., 18:243.

    Article  MathSciNet  ADS  Google Scholar 

  • Harvey, J.K., 1986, Direct simulation Monte Carlo method and comparison with experiment, Progr, in Astro, and Aero., 103:25.

    Google Scholar 

  • Koura, K., 1986, Null-collision technique in the direct simulation Monte Carlo method, Phys. Fluids, 29:3509.

    Article  ADS  Google Scholar 

  • Kuscer, I., 1974, Phenomenology of gas-surface accommodation, in “Rarefied Gas Dynamics”, Becker and Fiebig eds., DFVLR Press, Porz-Wahn.

    Google Scholar 

  • Meiburg, E., 1986, Comparison of the molecular dynamics method and the direct simulation technique for flows around simple geometries, Phys. Fluids, 29:3107.

    Article  ADS  Google Scholar 

  • Moss, J.N. and Bird, G.A., 1985, Direct simulation of transitional flow for hypersonic re-entry conditions, Progr. in. Astro, Aero., 96:113.

    Google Scholar 

  • Muntz, E.P., 1989, Rarefied Gas Dynamics, Ann, Rev. Fluid Mech., 21:387.

    Article  MathSciNet  ADS  Google Scholar 

  • Nanbu, K,, 1983, J. Phys. Soc. Japan, 52:3382

    Google Scholar 

  • Nanbu, K., 1986, Theoretical basis of the direct simulation Monte Carlo method, in “Rarefied Gas Dynamics”, V. Boffi and C. Cercignani eds,, B.G. Tuebner, Stuttgart.

    Google Scholar 

  • Sturtevant, B. and Steinhilper, E.A,, 1974, Intermolecular potentials from shock structure experiments, in “Rarefied Gas Dynamics”, K. Karamcheti ed,. Academic Press, New York.

    Google Scholar 

  • Yen, S. M., 1984, Numerical Solution of the Nonlinear Boltzmann Equation for Nonequilibrium Gas Flow Problems, Ann. Rev. Fluid Mech., 16:67.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bird, G.A. (1990). The Direct Simulation Monte Carlo Method: Current Status and Perspectives. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics