Skip to main content
  • 74 Accesses

Abstract

The purpose of spectrum analysis as applied to MRS data obtained from in vivo tissue is to ascertain physiologically important parameters such as the relative or absolute concentrations of metabolites and the intracellular pH. These can be determined from the areas and positions of peaks in the spectrum. In order that the measurements reflect the actual tissue values, the processes by which spectra are analyzed must be objective, repeatable, and capable of satisfying quality-control tests. For a valid interpretation of MRS results, the user should be fully aware of the manner in which the raw data has been processed and of any problems that could affect the outcome of the analytical techniques used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindon, J. C. and Ferrige, A. G.: Digitisation and data processing in Fourier transform NMR, Progress in Nuclear Magnetic Resonance Spectroscopy 14: 27–66, 1980.

    Article  CAS  Google Scholar 

  2. Hoult, D. I., Chen, C-N., Eden, H., et al.: Elimination of baseline artifacts in spectra and their integrals, J. Mag. Res. 51: 110–117, 1983.

    Article  CAS  Google Scholar 

  3. Gadian, D. G., Proctor, E., Williams, S. R., et al.: Neurometabolic effects of an inborn error of amino acid metabolism demonstrated in vivo by 1H NMR, Magn. Reson. Med. 3: 150–156, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Campbell, I. D., Dobson, C. M., Williams, R. J. P., etal.: Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum, J. Mag. Res. 11: 172–181, 1973.

    Article  CAS  Google Scholar 

  5. Akitt, J. W.: A new kind of function for resolution enhancement, J. Mag. Res. 32: 311–324, 1978.

    Article  CAS  Google Scholar 

  6. Gordon, R. E., Hanley, P. E., and Shaw, D.: Topical magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy 15: 1–47, 1982.

    Article  CAS  Google Scholar 

  7. Dietrich, W. and Gerhards, R.: A simple method for the fitting of baselines and resonance peaks in NMR spectroscopy, J. Mag. Res. 44: 229–237, 1981.

    Article  CAS  Google Scholar 

  8. Neff, B. L., Ackerman, J. L., and Waugh, J. S.: Fully automatic software correction of Fourier transform NMR spectra, J. Mag. Res. 25: 335–340, 1977.

    Article  CAS  Google Scholar 

  9. Nelder, J. A. and Mead, R.: A simplex method for function minimization, The Computer Journal 7: 308–313, 1965.

    Google Scholar 

  10. Siegel, M. M.: The use of the modified simplex method for automatic phase correction in Fourier transform nuclear magnetic resonance spectroscopy, Analytica Chimica Acta 133: 103–108, 1981.

    Article  CAS  Google Scholar 

  11. Craig, E. C. and Marshall, A. G.: Automated phase correction of FT NMR spectra by means of phase measurement based on dispersion versus absorption relation (dispa), J. Mag. Res. 76: 458–475, 1988.

    Article  CAS  Google Scholar 

  12. Hilberman, M., Subramanian, V. H., Haselgrove, J. H., et al.: In vivo time-resolved brain phosphorus nuclear magnetic resonance, J. Cereb. Blood Flow Metab. 4: 334–342, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Gyulai, L., Bolinger, L., Leigh, J. S., etal.: Phosphorylethanolamine—the major constituent of the phosphomonoester peak observed by 31P-NMR on developing brain, FEBS Lett. 178: 137–142, 1984.

    Google Scholar 

  14. Maris, J. M., Evans, A. E., McLaughlin, A. C., etal.: 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ, N. Engl. J. Med. 312: 1500–1505, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Bergmann, G., Dietrich, W., Gunther, U., et al.: Fast parameter fit of two randomly overlapping Lorentzians, J. Mag. Res. 76: 193–199, 1988.

    Article  Google Scholar 

  16. Barkhuijsen, H., de Beer, R., Bovee, W. M. M. J., etal.: Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure, J. Mag. Res. 61: 465–481, 1985.

    Article  CAS  Google Scholar 

  17. Van der Veen, J. W. C., de Beer, R., Luyten, P. R., etal.: Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge, Magn. Reson. Med. 6: 92–98, 1988.

    Google Scholar 

  18. Sibisi, S., Skilling, J., Brereton, R. G., et al.: Maximum entropy signal processing in practical NMR spectroscopy, Nature 311: 446–447, 1984.

    Article  CAS  Google Scholar 

  19. Laue, E. D., Skilling, J., Staunton, J., etal.: Maximum entropy method in nuclear magnetic resonance spectroscopy, J. Mag. Res. 62: 437–452, 1985.

    Article  CAS  Google Scholar 

  20. Waller, M. L. and Tofts, P. S.: Edited 31P brain spectra using maximum entropy data processing, Magn. Reson. Med. 4: 385–392, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Nelson, S. J. and Brown, T. R.: A method for automatic quantification of one-dimensional spectra with low signal-to-noise ratio, J. Mag. Res. 75: 229–243, 1987.

    Article  Google Scholar 

  22. Kumaresan, R. and Tufts, D. W.: Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise, Transactions on IEEE Acoustic Speech and Signal Processing ASSP-30 (No. 6) 30: 833–840, 1982.

    Google Scholar 

  23. Golub, G. H. and Pereyra, V.: The differentiation of pseudo-inverses and nonlinear leastsquares problems whose variables separate, Society for Industrial and Applied Mathematics Journal on Numerical Analysis 10: 413–432, 1973.

    Google Scholar 

  24. Glonek, T., Kopp, S. J., Kot, E., et al.: P-31 nuclear magnetic resonance analysis of brain: The perchloric acid extract spectrum, J. Neurochem. 39: 1210–1219, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Arus, C., Chang, Y., and Barany, M.: Proton nuclear magnetic resonance spectra of excised rat brain. Assignment of resonances, Physiol Chem. Phys. Med. NMR 17: 23–33, 1985.

    PubMed  CAS  Google Scholar 

  26. Pettegrew, J. W., Kopp, S. J., Dadok, J., et al.: Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and NMR analysis at 4.7 and 14.1 tesla, J. Mag. Res. 67: 443–450, 1986.

    Article  CAS  Google Scholar 

  27. Roth, K., Hubesch, B., Meyerhoff, D. J., et al.: Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy, J. Mag. Res. 81: 299–311, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Cady, E.B. (1990). Spectrum Analysis. In: Clinical Magnetic Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1333-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1333-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1335-9

  • Online ISBN: 978-1-4684-1333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics